Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Identification of Local Factors Causing Clustering of Animal-Vehicle Collisions on Roads

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F18%3AN0000034" target="_blank" >RIV/44994575:_____/18:N0000034 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://wildlife.onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.21467" target="_blank" >https://wildlife.onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.21467</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jwmg.21467" target="_blank" >10.1002/jwmg.21467</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Identification of Local Factors Causing Clustering of Animal-Vehicle Collisions on Roads

  • Popis výsledku v původním jazyce

    Effective measures reducing risk of animal-vehicle collisions (AVC) require defining high-risk locations on roads where AVCs occur. Previous studies examined factors explaining locations of individua l AVCs; however, some AVCs can form hotspots (i.e., clusters of AVCs) that can be explained by local factors. We therefore applied a novel kernel density estimation (KDE) method to AVCs for the Czech Republic from October 2006 to December 2011 to identify AVCs hotspots along roads. Our main goal was to identify local factors and their effect on the non-random (clustered) occurrenc e of AVCs. The remaining solitary AVCs occurred randomly and are likely induced by other human factors on the global scale. The hotspot identification method followed by the selected data mining methods (KDE þ methods) identified factors causing local clustering of AVCs. Distance from forest ( < 350 m) or linear vegetation were important factors for estimating presence of clusters of AVCs; in open areas, AVC clusters were absent. Further research on effectiveness of measures reducing risk of AVC should focus on clusters of AVCs, not on the individua l AVC. We recommend that state transportati on agencies focus mitigation actions in forested areas.

  • Název v anglickém jazyce

    Identification of Local Factors Causing Clustering of Animal-Vehicle Collisions on Roads

  • Popis výsledku anglicky

    Effective measures reducing risk of animal-vehicle collisions (AVC) require defining high-risk locations on roads where AVCs occur. Previous studies examined factors explaining locations of individua l AVCs; however, some AVCs can form hotspots (i.e., clusters of AVCs) that can be explained by local factors. We therefore applied a novel kernel density estimation (KDE) method to AVCs for the Czech Republic from October 2006 to December 2011 to identify AVCs hotspots along roads. Our main goal was to identify local factors and their effect on the non-random (clustered) occurrenc e of AVCs. The remaining solitary AVCs occurred randomly and are likely induced by other human factors on the global scale. The hotspot identification method followed by the selected data mining methods (KDE þ methods) identified factors causing local clustering of AVCs. Distance from forest ( < 350 m) or linear vegetation were important factors for estimating presence of clusters of AVCs; in open areas, AVC clusters were absent. Further research on effectiveness of measures reducing risk of AVC should focus on clusters of AVCs, not on the individua l AVC. We recommend that state transportati on agencies focus mitigation actions in forested areas.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Wildlife Management

  • ISSN

    0022-541X

  • e-ISSN

    0022-541X

  • Svazek periodika

    82

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    940-947

  • Kód UT WoS článku

    000435816100008

  • EID výsledku v databázi Scopus