Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Roadside vegetation influences clustering of ungulate vehicle collisions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F19%3AN0000021" target="_blank" >RIV/44994575:_____/19:N0000021 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41320/19:80190 RIV/60460709:41330/19:80190

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1361920918311659" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1361920918311659</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.trd.2019.07.013" target="_blank" >10.1016/j.trd.2019.07.013</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Roadside vegetation influences clustering of ungulate vehicle collisions

  • Popis výsledku v původním jazyce

    The aim of this study was to identify landscape-related factors which could explain the concentration of traffic crashes with large ungulates in a forest environment. We worked with ungulate-vehicle collisions which took place on the Czech road network in the period 2014–2016 using the application Srazenazver.cz. With the KDE+ method, we chose the most significant hotspots with linkage to forest. For comparison we randomly selected control localities outside the KDE+ hotspots (i.e., with very low level of ungulate-vehicle collisions) but still in the forest area. A set of photos were taken at each hotspot and control locality (2 orthophotos and 4 driver views). Each set of images was then visually analysed by two independent evaluators. They did not know which set of images were for hotspots and which set of images were for control localities. From the point of view of the overall score, it cannot be said that these two groups of locations differ (p-value 0.3575, Kolmogorov-Smirnov test). The only attribute that demonstrated a difference between hotspots and randomly selected locations was “attractiveness (quality food source and cover) of the immediate vicinity of the transport infrastructure for the ungulates” (p-value 0.0016, Kolmogorov-Smirnov test). Results confirm the importance of landscape management in the surroundings of transport infrastructure, especially in its immediate vicinity. However, they did not confirm the possibility that the most dangerous locations from the UVC point of view could be identified on the basis of landscape composition and the overall state of vegetation around transport infrastructure.

  • Název v anglickém jazyce

    Roadside vegetation influences clustering of ungulate vehicle collisions

  • Popis výsledku anglicky

    The aim of this study was to identify landscape-related factors which could explain the concentration of traffic crashes with large ungulates in a forest environment. We worked with ungulate-vehicle collisions which took place on the Czech road network in the period 2014–2016 using the application Srazenazver.cz. With the KDE+ method, we chose the most significant hotspots with linkage to forest. For comparison we randomly selected control localities outside the KDE+ hotspots (i.e., with very low level of ungulate-vehicle collisions) but still in the forest area. A set of photos were taken at each hotspot and control locality (2 orthophotos and 4 driver views). Each set of images was then visually analysed by two independent evaluators. They did not know which set of images were for hotspots and which set of images were for control localities. From the point of view of the overall score, it cannot be said that these two groups of locations differ (p-value 0.3575, Kolmogorov-Smirnov test). The only attribute that demonstrated a difference between hotspots and randomly selected locations was “attractiveness (quality food source and cover) of the immediate vicinity of the transport infrastructure for the ungulates” (p-value 0.0016, Kolmogorov-Smirnov test). Results confirm the importance of landscape management in the surroundings of transport infrastructure, especially in its immediate vicinity. However, they did not confirm the possibility that the most dangerous locations from the UVC point of view could be identified on the basis of landscape composition and the overall state of vegetation around transport infrastructure.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40102 - Forestry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transportation Research Part D: Transport and Environment

  • ISSN

    1361-9209

  • e-ISSN

  • Svazek periodika

    73

  • Číslo periodika v rámci svazku

    2019

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    381-390

  • Kód UT WoS článku

    999

  • EID výsledku v databázi Scopus