Roadside vegetation influences clustering of ungulate vehicle collisions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F19%3AN0000021" target="_blank" >RIV/44994575:_____/19:N0000021 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41320/19:80190 RIV/60460709:41330/19:80190
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1361920918311659" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1361920918311659</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trd.2019.07.013" target="_blank" >10.1016/j.trd.2019.07.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Roadside vegetation influences clustering of ungulate vehicle collisions
Popis výsledku v původním jazyce
The aim of this study was to identify landscape-related factors which could explain the concentration of traffic crashes with large ungulates in a forest environment. We worked with ungulate-vehicle collisions which took place on the Czech road network in the period 2014–2016 using the application Srazenazver.cz. With the KDE+ method, we chose the most significant hotspots with linkage to forest. For comparison we randomly selected control localities outside the KDE+ hotspots (i.e., with very low level of ungulate-vehicle collisions) but still in the forest area. A set of photos were taken at each hotspot and control locality (2 orthophotos and 4 driver views). Each set of images was then visually analysed by two independent evaluators. They did not know which set of images were for hotspots and which set of images were for control localities. From the point of view of the overall score, it cannot be said that these two groups of locations differ (p-value 0.3575, Kolmogorov-Smirnov test). The only attribute that demonstrated a difference between hotspots and randomly selected locations was “attractiveness (quality food source and cover) of the immediate vicinity of the transport infrastructure for the ungulates” (p-value 0.0016, Kolmogorov-Smirnov test). Results confirm the importance of landscape management in the surroundings of transport infrastructure, especially in its immediate vicinity. However, they did not confirm the possibility that the most dangerous locations from the UVC point of view could be identified on the basis of landscape composition and the overall state of vegetation around transport infrastructure.
Název v anglickém jazyce
Roadside vegetation influences clustering of ungulate vehicle collisions
Popis výsledku anglicky
The aim of this study was to identify landscape-related factors which could explain the concentration of traffic crashes with large ungulates in a forest environment. We worked with ungulate-vehicle collisions which took place on the Czech road network in the period 2014–2016 using the application Srazenazver.cz. With the KDE+ method, we chose the most significant hotspots with linkage to forest. For comparison we randomly selected control localities outside the KDE+ hotspots (i.e., with very low level of ungulate-vehicle collisions) but still in the forest area. A set of photos were taken at each hotspot and control locality (2 orthophotos and 4 driver views). Each set of images was then visually analysed by two independent evaluators. They did not know which set of images were for hotspots and which set of images were for control localities. From the point of view of the overall score, it cannot be said that these two groups of locations differ (p-value 0.3575, Kolmogorov-Smirnov test). The only attribute that demonstrated a difference between hotspots and randomly selected locations was “attractiveness (quality food source and cover) of the immediate vicinity of the transport infrastructure for the ungulates” (p-value 0.0016, Kolmogorov-Smirnov test). Results confirm the importance of landscape management in the surroundings of transport infrastructure, especially in its immediate vicinity. However, they did not confirm the possibility that the most dangerous locations from the UVC point of view could be identified on the basis of landscape composition and the overall state of vegetation around transport infrastructure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transportation Research Part D: Transport and Environment
ISSN
1361-9209
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
381-390
Kód UT WoS článku
999
EID výsledku v databázi Scopus
—