Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F19%3AN0000024" target="_blank" >RIV/44994575:_____/19:N0000024 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0301479719307042" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479719307042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2019.05.084" target="_blank" >10.1016/j.jenvman.2019.05.084</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events
Popis výsledku v původním jazyce
Knowledge about the cause of differential structural damages following the occurrence of hazardous hydro-meteorological events can inform more effective risk management and spatial planning solutions. While studies have been previously conducted to describe relationships between physical vulnerability and features about building properties, the immediate environment and event intensity proxies, several key challenges remain. In particular, observations, especially those associated with high magnitude events, and studies designed to evaluate a comprehensive range of predictive features are both limited. To build upon previous developments, we described a workflow to support the continued development and assessment of empirical, multivariate physical vulnerability functions based on predictive accuracy. Within this workflow, we evaluated several statistical approaches, namely generalized linear models and their more complex alternatives. A series of models were built 1) to explicitly consider the effects of dimension reduction, 2) to evaluate the inclusion of interaction effects between and among predictors, 3) to evaluate an ensemble prediction method for applications where data observations are sparse, 4) to describe how model results can inform about the relative importance of predictors to explain variance in expected damages and 5) to assess the predictive accuracy of the models based on prescribed metrics. The utility of the workflow was demonstrated on data with characteristics of what is commonly acquired in ex-post field assessments. The workflow and recommendations from this study aim to provide guidance to researchers and practitioners in the natural hazards community.
Název v anglickém jazyce
Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events
Popis výsledku anglicky
Knowledge about the cause of differential structural damages following the occurrence of hazardous hydro-meteorological events can inform more effective risk management and spatial planning solutions. While studies have been previously conducted to describe relationships between physical vulnerability and features about building properties, the immediate environment and event intensity proxies, several key challenges remain. In particular, observations, especially those associated with high magnitude events, and studies designed to evaluate a comprehensive range of predictive features are both limited. To build upon previous developments, we described a workflow to support the continued development and assessment of empirical, multivariate physical vulnerability functions based on predictive accuracy. Within this workflow, we evaluated several statistical approaches, namely generalized linear models and their more complex alternatives. A series of models were built 1) to explicitly consider the effects of dimension reduction, 2) to evaluate the inclusion of interaction effects between and among predictors, 3) to evaluate an ensemble prediction method for applications where data observations are sparse, 4) to describe how model results can inform about the relative importance of predictors to explain variance in expected damages and 5) to assess the predictive accuracy of the models based on prescribed metrics. The utility of the workflow was demonstrated on data with characteristics of what is commonly acquired in ex-post field assessments. The workflow and recommendations from this study aim to provide guidance to researchers and practitioners in the natural hazards community.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Management
ISSN
0301-4797
e-ISSN
—
Svazek periodika
246
Číslo periodika v rámci svazku
15 September 2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
85-100
Kód UT WoS článku
999
EID výsledku v databázi Scopus
—