Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F19%3AN0000024" target="_blank" >RIV/44994575:_____/19:N0000024 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0301479719307042" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479719307042</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jenvman.2019.05.084" target="_blank" >10.1016/j.jenvman.2019.05.084</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events

  • Popis výsledku v původním jazyce

    Knowledge about the cause of differential structural damages following the occurrence of hazardous hydro-meteorological events can inform more effective risk management and spatial planning solutions. While studies have been previously conducted to describe relationships between physical vulnerability and features about building properties, the immediate environment and event intensity proxies, several key challenges remain. In particular, observations, especially those associated with high magnitude events, and studies designed to evaluate a comprehensive range of predictive features are both limited. To build upon previous developments, we described a workflow to support the continued development and assessment of empirical, multivariate physical vulnerability functions based on predictive accuracy. Within this workflow, we evaluated several statistical approaches, namely generalized linear models and their more complex alternatives. A series of models were built 1) to explicitly consider the effects of dimension reduction, 2) to evaluate the inclusion of interaction effects between and among predictors, 3) to evaluate an ensemble prediction method for applications where data observations are sparse, 4) to describe how model results can inform about the relative importance of predictors to explain variance in expected damages and 5) to assess the predictive accuracy of the models based on prescribed metrics. The utility of the workflow was demonstrated on data with characteristics of what is commonly acquired in ex-post field assessments. The workflow and recommendations from this study aim to provide guidance to researchers and practitioners in the natural hazards community.

  • Název v anglickém jazyce

    Application of statistical techniques to proportional loss data: Evaluating the predictive accuracy of physical vulnerability to hazardous hydro-meteorological events

  • Popis výsledku anglicky

    Knowledge about the cause of differential structural damages following the occurrence of hazardous hydro-meteorological events can inform more effective risk management and spatial planning solutions. While studies have been previously conducted to describe relationships between physical vulnerability and features about building properties, the immediate environment and event intensity proxies, several key challenges remain. In particular, observations, especially those associated with high magnitude events, and studies designed to evaluate a comprehensive range of predictive features are both limited. To build upon previous developments, we described a workflow to support the continued development and assessment of empirical, multivariate physical vulnerability functions based on predictive accuracy. Within this workflow, we evaluated several statistical approaches, namely generalized linear models and their more complex alternatives. A series of models were built 1) to explicitly consider the effects of dimension reduction, 2) to evaluate the inclusion of interaction effects between and among predictors, 3) to evaluate an ensemble prediction method for applications where data observations are sparse, 4) to describe how model results can inform about the relative importance of predictors to explain variance in expected damages and 5) to assess the predictive accuracy of the models based on prescribed metrics. The utility of the workflow was demonstrated on data with characteristics of what is commonly acquired in ex-post field assessments. The workflow and recommendations from this study aim to provide guidance to researchers and practitioners in the natural hazards community.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Environmental Management

  • ISSN

    0301-4797

  • e-ISSN

  • Svazek periodika

    246

  • Číslo periodika v rámci svazku

    15 September 2019

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    85-100

  • Kód UT WoS článku

    999

  • EID výsledku v databázi Scopus