Factors related to severe single-vehicle tree crashes: In-depth crash study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44994575%3A_____%2F22%3AN0000011" target="_blank" >RIV/44994575:_____/22:N0000011 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248171" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248171</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0248171" target="_blank" >10.1371/journal.pone.0248171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Factors related to severe single-vehicle tree crashes: In-depth crash study
Popis výsledku v původním jazyce
Vehicle-tree collisions are the most common type of road crash with fixed obstacle in Czech Republic. Based on the literature review and using real world in-depth crash data, this paper aims to define factors, which significantly influence the injury severity of single vehicle-tree crashes. In-depth data provide a comprehensive view to the failure on the system infrastructure—human—vehicle related to crash, the in-depth crash database include very detailed information related to infrastructure, vehicle, human failure and crash participants characteristics and their medical condition and also crash reconstruction. Multinomial logistic regression and generalized linear mixed model were used to determine the individual effect of each predictor. The statistically significant variables were the day period, trunk diameter and impact speed. Using multinomial logistic regression shows also vehicle age as statistically significant. Obtained results can help to efficiently direct countermeasures not only on the road infrastructure—e.g. speed reduction in selected locations with specified tree character. However, the emphasis should be also focused on driver behaviour.
Název v anglickém jazyce
Factors related to severe single-vehicle tree crashes: In-depth crash study
Popis výsledku anglicky
Vehicle-tree collisions are the most common type of road crash with fixed obstacle in Czech Republic. Based on the literature review and using real world in-depth crash data, this paper aims to define factors, which significantly influence the injury severity of single vehicle-tree crashes. In-depth data provide a comprehensive view to the failure on the system infrastructure—human—vehicle related to crash, the in-depth crash database include very detailed information related to infrastructure, vehicle, human failure and crash participants characteristics and their medical condition and also crash reconstruction. Multinomial logistic regression and generalized linear mixed model were used to determine the individual effect of each predictor. The statistically significant variables were the day period, trunk diameter and impact speed. Using multinomial logistic regression shows also vehicle age as statistically significant. Obtained results can help to efficiently direct countermeasures not only on the road infrastructure—e.g. speed reduction in selected locations with specified tree character. However, the emphasis should be also focused on driver behaviour.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plos One
ISSN
1932-6203
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000769158400001
EID výsledku v databázi Scopus
—