CFD Simulation of Slug Mixing in VVER-1000 Reactor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F06%3A%230000960" target="_blank" >RIV/46356088:_____/06:#0000960 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CFD Simulation of Slug Mixing in VVER-1000 Reactor
Popis výsledku v původním jazyce
This report deals with a CFD simulation of the most dangerous slug-mixing event: the start-up of the first RCP. Only several seconds are needed for slug to reach the core and the operator has no time for corrective action. Mixing of slug on its way to the core can reduce the danger of core recriticality. The primary objective of this study was to find out whether the FLUENT 6 CFD code is capable of predicting the mixing in the cold leg, downcomer and lower plenum as the slug moves toward the reactor core. Numerical simulations were based on mixing tests performed on 1:5 scale model of VVER-1000 reactor at the Gidropress Design Bureau, Russia. In the physical mixing tests, temperature was substituted for Boron concentration through the use of hot and cold water. The time history of core inlet average temperature was calculated by FLUENT and was found to be in good qualitative agreement with experimental data.
Název v anglickém jazyce
CFD Simulation of Slug Mixing in VVER-1000 Reactor
Popis výsledku anglicky
This report deals with a CFD simulation of the most dangerous slug-mixing event: the start-up of the first RCP. Only several seconds are needed for slug to reach the core and the operator has no time for corrective action. Mixing of slug on its way to the core can reduce the danger of core recriticality. The primary objective of this study was to find out whether the FLUENT 6 CFD code is capable of predicting the mixing in the cold leg, downcomer and lower plenum as the slug moves toward the reactor core. Numerical simulations were based on mixing tests performed on 1:5 scale model of VVER-1000 reactor at the Gidropress Design Bureau, Russia. In the physical mixing tests, temperature was substituted for Boron concentration through the use of hot and cold water. The time history of core inlet average temperature was calculated by FLUENT and was found to be in good qualitative agreement with experimental data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/FT-TA3%2F071" target="_blank" >FT-TA3/071: Bezpečnostní aspekty pokročilých jaderných reaktorů.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Fourteenth International Conference on Nuclear Engineering (ICONE14) and 2006 ASME Joint U.S.-European Fluids Engineering Summer Meeting (FEDSM2006)
ISBN
0-7918-3783-1
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
ASME, The American Society of Mechanical Engineers, www.asme.org
Místo vydání
Miami, Florida, USA
Místo konání akce
Miami, Florida, USA
Datum konání akce
17. 7. 2006
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—