CFD simulation of air-steam flow with condensation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F14%3A%230001541" target="_blank" >RIV/46356088:_____/14:#0001541 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.nucengdes.2014.02.014" target="_blank" >http://dx.doi.org/10.1016/j.nucengdes.2014.02.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nucengdes.2014.02.014" target="_blank" >10.1016/j.nucengdes.2014.02.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CFD simulation of air-steam flow with condensation
Popis výsledku v původním jazyce
This article presents a custom condensation model for commercial CFD code Fluent. The condensation model was developed for the species transport model in Fluent code and it is suitable for both compressible and incompressible flow of air-steam mixture with additional non-condensable gases. The condensation model consists of two parts: condensation in volume and condensation on the wall. Condensation in volume is modeled by "return to saturation in constant time scale" method. Condensation on the wall iscalculated from diffusion of steam through a layer of non-condensable gases near the wall. The performance of the condensation model was tested on the CONAN experiments. In these experiments, air-steam mixture flows downwards through a vertical channelwith square cross section. One vertical wall of the channel is cooled and the steam condenses on it. The same model was then applied in simulation of PANDA Test 9bis experiment with condensation. In this test, two vessels connected with a
Název v anglickém jazyce
CFD simulation of air-steam flow with condensation
Popis výsledku anglicky
This article presents a custom condensation model for commercial CFD code Fluent. The condensation model was developed for the species transport model in Fluent code and it is suitable for both compressible and incompressible flow of air-steam mixture with additional non-condensable gases. The condensation model consists of two parts: condensation in volume and condensation on the wall. Condensation in volume is modeled by "return to saturation in constant time scale" method. Condensation on the wall iscalculated from diffusion of steam through a layer of non-condensable gases near the wall. The performance of the condensation model was tested on the CONAN experiments. In these experiments, air-steam mixture flows downwards through a vertical channelwith square cross section. One vertical wall of the channel is cooled and the steam condenses on it. The same model was then applied in simulation of PANDA Test 9bis experiment with condensation. In this test, two vessels connected with a
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JF - Jaderná energetika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Engineering and Design
ISSN
0029-5493
e-ISSN
—
Svazek periodika
279
Číslo periodika v rámci svazku
SI
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
147-157
Kód UT WoS článku
000345203500015
EID výsledku v databázi Scopus
—