The McSAFE project - High-performance Monte Carlo based methods for safety demonstration: From proof of concept to industry applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46356088%3A_____%2F20%3AN0000064" target="_blank" >RIV/46356088:_____/20:N0000064 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_06004.pdf" target="_blank" >https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_06004.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/202124706004" target="_blank" >10.1051/epjconf/202124706004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The McSAFE project - High-performance Monte Carlo based methods for safety demonstration: From proof of concept to industry applications
Popis výsledku v původním jazyce
The increasing use of Monte Carlo methods for core analysis is fostered by the huge and cheap computer power available nowadays e.g. in large HPC. Apart from the classical criticality calculations, the application of Monte Carlo methods for depletion analysis and cross section generation for diffusion and transport core simulators is also expanding. In addition, the development of multi-physics codes by coupling Monte Carlo solvers with thermal hydraulic codes (CFD, subchannel and system thermal hydraulics) to perform full core static core analysis at fuel assembly or pin level has progressed in the last decades. Finally, the extensions of the Monte Carlo codes to describe the behavior of prompt and delay neutrons, control rod movements, etc. has been started some years ago. Recent coupling of dynamic versions of Monte Carlo codes with subchannel codes make possible the analysis of transient e.g. rod ejection accidents and it paves the way for the simulation of any kind of design basis accidents as an alternative option to the use of diffusion and transport based deterministic solvers. The H2020 McSAFE Project is focused on the improvement of methods for depletion considering thermal hydraulic feedbacks, extension of the coupled neutronic/thermal hydraulic codes by the incorporation of a fuel performance solver, the development of dynamic Monte Carlo codes and the development of methods to handle large depletion problems and to reduce the statistical uncertainty. The validation of the multi-physics tools developed within McSAFE will be performed using plant data and unique tests e.g. the SPERT III E REA test. This paper will describe the main developments, solution approaches, and selected results.
Název v anglickém jazyce
The McSAFE project - High-performance Monte Carlo based methods for safety demonstration: From proof of concept to industry applications
Popis výsledku anglicky
The increasing use of Monte Carlo methods for core analysis is fostered by the huge and cheap computer power available nowadays e.g. in large HPC. Apart from the classical criticality calculations, the application of Monte Carlo methods for depletion analysis and cross section generation for diffusion and transport core simulators is also expanding. In addition, the development of multi-physics codes by coupling Monte Carlo solvers with thermal hydraulic codes (CFD, subchannel and system thermal hydraulics) to perform full core static core analysis at fuel assembly or pin level has progressed in the last decades. Finally, the extensions of the Monte Carlo codes to describe the behavior of prompt and delay neutrons, control rod movements, etc. has been started some years ago. Recent coupling of dynamic versions of Monte Carlo codes with subchannel codes make possible the analysis of transient e.g. rod ejection accidents and it paves the way for the simulation of any kind of design basis accidents as an alternative option to the use of diffusion and transport based deterministic solvers. The H2020 McSAFE Project is focused on the improvement of methods for depletion considering thermal hydraulic feedbacks, extension of the coupled neutronic/thermal hydraulic codes by the incorporation of a fuel performance solver, the development of dynamic Monte Carlo codes and the development of methods to handle large depletion problems and to reduce the statistical uncertainty. The validation of the multi-physics tools developed within McSAFE will be performed using plant data and unique tests e.g. the SPERT III E REA test. This paper will describe the main developments, solution approaches, and selected results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20305 - Nuclear related engineering; (nuclear physics to be 1.3);
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020
ISBN
978-171382724-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
943-950
Název nakladatele
EDP Sciences - Web of Conferences
Místo vydání
—
Místo konání akce
Cambridge
Datum konání akce
28. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—