Influence of Material Cutting on the Cyclic Fatigue of TRIP Steel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F15%3A00002590" target="_blank" >RIV/46747885:24210/15:00002590 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of Material Cutting on the Cyclic Fatigue of TRIP Steel
Popis výsledku v původním jazyce
Formed parts of the car-body represent cyclic loaded products. For the proper design of these parts is very important not only knowledge of deformation and stress material behavior at production by forming technologies but important is also knowledge of other factors which influence subsequent product utility properties at the car operation. It`s obvious that truly important parameter for the proper car-body part proposal is the fatigue strength of the given material. Mainly for cyclic exposed stampings of chassis assembly is knowledge of used materials fatigue strength one of the basic presumptions for the safe car operation. Measured dependences of stress size on the number of cycles (Wöhler`s curves) are thus very important input parameter at design for the given car-body part. However from the practical point-of-view they don`t reflect influence of individual production technologies on the fatigue strength of processed materials. Regarding fact that formed parts from steel sheets are during production cut by several different technologies is submitted paper focuses on the determination of material cutting influence on the fatigue strength. For experiment there was chosen ultra-high strength TRIP steel and the most commonly used material cutting technologies (laser cutting, shearing and machining). For samples prepared as mentioned was on the six stress levels observed material cutting influence on the achieve number of cycles up to fracture. Results of experiments were compared with the reference samples which were machined. Results from measurements are presented mainly graphically as stress versus number of cycles and fatigue fracture surfaces images from the electron microscope.
Název v anglickém jazyce
Influence of Material Cutting on the Cyclic Fatigue of TRIP Steel
Popis výsledku anglicky
Formed parts of the car-body represent cyclic loaded products. For the proper design of these parts is very important not only knowledge of deformation and stress material behavior at production by forming technologies but important is also knowledge of other factors which influence subsequent product utility properties at the car operation. It`s obvious that truly important parameter for the proper car-body part proposal is the fatigue strength of the given material. Mainly for cyclic exposed stampings of chassis assembly is knowledge of used materials fatigue strength one of the basic presumptions for the safe car operation. Measured dependences of stress size on the number of cycles (Wöhler`s curves) are thus very important input parameter at design for the given car-body part. However from the practical point-of-view they don`t reflect influence of individual production technologies on the fatigue strength of processed materials. Regarding fact that formed parts from steel sheets are during production cut by several different technologies is submitted paper focuses on the determination of material cutting influence on the fatigue strength. For experiment there was chosen ultra-high strength TRIP steel and the most commonly used material cutting technologies (laser cutting, shearing and machining). For samples prepared as mentioned was on the six stress levels observed material cutting influence on the achieve number of cycles up to fracture. Results of experiments were compared with the reference samples which were machined. Results from measurements are presented mainly graphically as stress versus number of cycles and fatigue fracture surfaces images from the electron microscope.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
METAL 2015 Conference Proceedings
ISBN
978-80-87294-62-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
704-709
Název nakladatele
Tanger Ltd.
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
1. 1. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—