Influence of the structure on the possibilities of neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F15%3A00002791" target="_blank" >RIV/46747885:24210/15:00002791 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of the structure on the possibilities of neural networks
Popis výsledku v původním jazyce
The article briefly describes the possibilities and usage of neural networks. It further deals with the McCulloch-Pitts neuron artificial model. The article also focuses on the analysis of the architecture of neural networks with regard on the possibility of application. Among the described architectures there are preceptron, layered neural networks and long short term memory architecture. Further attention is paid to the issue of layered neural networks architecture and to the increase of computing demands in relation to the number of neurons in the hidden layers. The second monitored parameter is the number of hidden layers and its influence on the computing time of the neural network. The conclusion provides the measurements results of the computingtime speed of neural networks and evaluation of the achieved results.
Název v anglickém jazyce
Influence of the structure on the possibilities of neural networks
Popis výsledku anglicky
The article briefly describes the possibilities and usage of neural networks. It further deals with the McCulloch-Pitts neuron artificial model. The article also focuses on the analysis of the architecture of neural networks with regard on the possibility of application. Among the described architectures there are preceptron, layered neural networks and long short term memory architecture. Further attention is paid to the issue of layered neural networks architecture and to the increase of computing demands in relation to the number of neurons in the hidden layers. The second monitored parameter is the number of hidden layers and its influence on the computing time of the neural network. The conclusion provides the measurements results of the computingtime speed of neural networks and evaluation of the achieved results.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů