Formation and dispersion of CO2 after combustion in closed area
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F17%3A00004308" target="_blank" >RIV/46747885:24210/17:00004308 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/content/pdf/10.1134/S1810232817040087.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1134/S1810232817040087.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1810232817040087" target="_blank" >10.1134/S1810232817040087</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formation and dispersion of CO2 after combustion in closed area
Popis výsledku v původním jazyce
This study deals with the formation of carbon dioxide (CO2) after combustion process and dispersion in a closed area. The formation and dispersion of CO2 were numerically simulated and validated by experiment. Ethanol (C2H5OH) was chosen as a fuel for the combustion process. Numerical simulations were carried out by using Reynolds averaged Navier–Stokes (RANS) approach with k-ε and k-ω turbulent models. The combustion process was simulated using two methods. Species transport with chemical reactions was the first method, and the second method was the nonpremix combustion model based on the mixture fraction theory. There were done some sensitivity studies on the influence of the time step size and a resolution of computational grid. Results from numerical simulations were validated by experimental measurements, where the CO2 concentration was measured by the non-dispersive infrared (NDIR) sensor at four points.
Název v anglickém jazyce
Formation and dispersion of CO2 after combustion in closed area
Popis výsledku anglicky
This study deals with the formation of carbon dioxide (CO2) after combustion process and dispersion in a closed area. The formation and dispersion of CO2 were numerically simulated and validated by experiment. Ethanol (C2H5OH) was chosen as a fuel for the combustion process. Numerical simulations were carried out by using Reynolds averaged Navier–Stokes (RANS) approach with k-ε and k-ω turbulent models. The combustion process was simulated using two methods. Species transport with chemical reactions was the first method, and the second method was the nonpremix combustion model based on the mixture fraction theory. There were done some sensitivity studies on the influence of the time step size and a resolution of computational grid. Results from numerical simulations were validated by experimental measurements, where the CO2 concentration was measured by the non-dispersive infrared (NDIR) sensor at four points.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Engineering Thermophysics
ISSN
1810-2328
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
10
Strana od-do
532-541
Kód UT WoS článku
000415335700008
EID výsledku v databázi Scopus
2-s2.0-85035020314