Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Combination of Bioprinting with 3D Fibrous Scaffolds Based on Electrospinning and Meltblown Technology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F17%3A00005072" target="_blank" >RIV/46747885:24210/17:00005072 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24410/17:00005072

  • Výsledek na webu

    <a href="http://www.autex2017.org/" target="_blank" >http://www.autex2017.org/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Combination of Bioprinting with 3D Fibrous Scaffolds Based on Electrospinning and Meltblown Technology

  • Popis výsledku v původním jazyce

    This study presents the advantages of a combination of three-dimensional biodegradable scaffolds with bioprinting. This combination uses the synergic effect of the individual components` properties – very favorable mechanical and structural properties of fiber scaffolds from polycaprolactone and the target bioprinting of hydrogel cell suspension with high hydrophilicity. These properties very positively promote the inner cell proliferation and the ability to create compact tissue. The scaffolds were composed of a mixture of microfibers produced by meltblown technology ensuring optimal three-dimensional porous structure and sufficient mechanical properties, and electrospun nanofibers for good cell adhesion. The scaffolds were suitable for the combination with bioprinting thanks to their mechanical properties since only a single nanofibrous scaffold was deformed during bioprinting. Bioprinting was realized by CNC manipulator with a heated print head, which enabled exact dosing of hydrogel cell suspension into the scaffolds. Hyaluronan hydrogel created a favorable hydrophilic ambience after filling the fiber structure. The preliminary in-vitro tests showed a high potential of this combination in bone tissue engineering. Proper structural and mechanical properties of the tested material allow osteoblasts to proliferate into the inner structure of the sample. Significant contribution of printed hydrogel cell suspension to cell proliferation rate has been shown. The most suitable hydrogel for the osteoblasts has been identified. The research presented in this article was supported by the SGS project – 21203.

  • Název v anglickém jazyce

    The Combination of Bioprinting with 3D Fibrous Scaffolds Based on Electrospinning and Meltblown Technology

  • Popis výsledku anglicky

    This study presents the advantages of a combination of three-dimensional biodegradable scaffolds with bioprinting. This combination uses the synergic effect of the individual components` properties – very favorable mechanical and structural properties of fiber scaffolds from polycaprolactone and the target bioprinting of hydrogel cell suspension with high hydrophilicity. These properties very positively promote the inner cell proliferation and the ability to create compact tissue. The scaffolds were composed of a mixture of microfibers produced by meltblown technology ensuring optimal three-dimensional porous structure and sufficient mechanical properties, and electrospun nanofibers for good cell adhesion. The scaffolds were suitable for the combination with bioprinting thanks to their mechanical properties since only a single nanofibrous scaffold was deformed during bioprinting. Bioprinting was realized by CNC manipulator with a heated print head, which enabled exact dosing of hydrogel cell suspension into the scaffolds. Hyaluronan hydrogel created a favorable hydrophilic ambience after filling the fiber structure. The preliminary in-vitro tests showed a high potential of this combination in bone tissue engineering. Proper structural and mechanical properties of the tested material allow osteoblasts to proliferate into the inner structure of the sample. Significant contribution of printed hydrogel cell suspension to cell proliferation rate has been shown. The most suitable hydrogel for the osteoblasts has been identified. The research presented in this article was supported by the SGS project – 21203.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů