Effects of loading rate, applied shear strain, and magnetic field on stress relaxation behavior of anisotropic magnetorheological elastomer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F21%3A00008220" target="_blank" >RIV/46747885:24210/21:00008220 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/15376494.2021.1883162" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/15376494.2021.1883162</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/15376494.2021.1883162" target="_blank" >10.1080/15376494.2021.1883162</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of loading rate, applied shear strain, and magnetic field on stress relaxation behavior of anisotropic magnetorheological elastomer
Popis výsledku v původním jazyce
Experimental research and numerical computation of stress relaxation behavior of an anisotropic magnetorheological elastomer (MRE) have been conducted in this paper. The anisotropic MRE has been formed from silicone matrix and micro-sized carbonyl iron particles under a magnetic field. Stress relaxation response of the anisotropic MRE was examined by single- and multi-step relaxation tests in shear mode using double-lap shear specimens. The effects of loading rate, applied constant strain, and external magnetic field on the stress relaxation behavior of the anisotropic MRE were studied. Experimental results showed that the stress relaxation of the anisotropic MRE was slightly dependent on the loading rate, but strongly depended on the constant strain level and the magnitude of external magnetic field. When increasing the constant strain level the shear stress of the anisotropic MRE in the single-step relaxation enhanced, while the relaxation modulus declined. The shear stress and modulus of the anisotropic MRE in the relaxation periods increased with increasing the magnetic field intensity. The four-parameter fractional derivative Zener model was used to describe the stress relaxation behavior of the anisotropic MRE. The presented model was fitted well to experimental data of the anisotropic MRE in both single- and multi-step relaxation tests. The fittings of relaxation modulus and shear stress with long-term predictions for the anisotropic MRE are in a very good agreement with the experimental ones. The maximal relative error of the fitted curves compared with measured data for both relaxation modulus and shear stress is less than 5.0 %. As a result, the presented model is applicable to predict the long-term stress relaxation behavior of the anisotropic MRE.
Název v anglickém jazyce
Effects of loading rate, applied shear strain, and magnetic field on stress relaxation behavior of anisotropic magnetorheological elastomer
Popis výsledku anglicky
Experimental research and numerical computation of stress relaxation behavior of an anisotropic magnetorheological elastomer (MRE) have been conducted in this paper. The anisotropic MRE has been formed from silicone matrix and micro-sized carbonyl iron particles under a magnetic field. Stress relaxation response of the anisotropic MRE was examined by single- and multi-step relaxation tests in shear mode using double-lap shear specimens. The effects of loading rate, applied constant strain, and external magnetic field on the stress relaxation behavior of the anisotropic MRE were studied. Experimental results showed that the stress relaxation of the anisotropic MRE was slightly dependent on the loading rate, but strongly depended on the constant strain level and the magnitude of external magnetic field. When increasing the constant strain level the shear stress of the anisotropic MRE in the single-step relaxation enhanced, while the relaxation modulus declined. The shear stress and modulus of the anisotropic MRE in the relaxation periods increased with increasing the magnetic field intensity. The four-parameter fractional derivative Zener model was used to describe the stress relaxation behavior of the anisotropic MRE. The presented model was fitted well to experimental data of the anisotropic MRE in both single- and multi-step relaxation tests. The fittings of relaxation modulus and shear stress with long-term predictions for the anisotropic MRE are in a very good agreement with the experimental ones. The maximal relative error of the fitted curves compared with measured data for both relaxation modulus and shear stress is less than 5.0 %. As a result, the presented model is applicable to predict the long-term stress relaxation behavior of the anisotropic MRE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mechanics of Advanced Materials and Structures
ISSN
1537-6494
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000617599700001
EID výsledku v databázi Scopus
2-s2.0-85100848932