Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-heating and dynamic mechanical behavior of silicone rubber composite filled with carbonyl iron particles under cyclic compressive loading

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F21%3A00008984" target="_blank" >RIV/46747885:24210/21:00008984 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.sagepub.com/doi/10.1177/00219983211037055" target="_blank" >https://journals.sagepub.com/doi/10.1177/00219983211037055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/00219983211037055" target="_blank" >10.1177/00219983211037055</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-heating and dynamic mechanical behavior of silicone rubber composite filled with carbonyl iron particles under cyclic compressive loading

  • Popis výsledku v původním jazyce

    Self-heating and dynamic mechanical behavior of isotropic silicone rubber composite (SRC) filled with micro-sized carbonyl iron particles (CIPs) subjected to cyclic compressive loading have been studied. Effects of pre-strains from 5 to 20%, strain amplitudes from 1 to 5%, and excitation frequencies from 10 to 50 Hz on the self-heating and dynamic mechanical response of the isotropic SRC were investigated. The self-heating temperatures were measured on the surface and at the center of cylindrical SRC specimens. The self-heating temperatures of the isotropic SRC samples showed a fast increase in an initial transient stage and the following isothermal stage. The temperature distribution in the isotropic SRC specimens was non-homogeneous and the temperature decreased from the center to sample edges. The self-heating temperatures of the isotropic SRC increased gradually with raising the strain amplitude and frequency. However, the difference between the internal and surface temperatures was slight for low strain amplitudes and frequencies, while it was significant for high strain amplitudes and frequencies. The temperatures of the isotropic SRC boosted rapidly with increasing the pre-strain to 10% and thereafter gained slightly. Although the isotropic SRC dynamic moduli reduced with the rise of the strain amplitude, they enhanced with increasing the pre-strain and frequency. Besides, the storage modulus of the isotropic SRC varied slightly with time, while the loss modulus reduced markedly especially at the initial period. The decrease in the loss modulus of the isotropic SRC under cyclic compressive loading is attributed to its self-heating temperature rise. A finite element simulation of the heat transfer in the SRC cylinder was conducted. The calculated temperatures in the SRC cylinder were in good agreement with the measured ones at different strain amplitudes and frequencies.

  • Název v anglickém jazyce

    Self-heating and dynamic mechanical behavior of silicone rubber composite filled with carbonyl iron particles under cyclic compressive loading

  • Popis výsledku anglicky

    Self-heating and dynamic mechanical behavior of isotropic silicone rubber composite (SRC) filled with micro-sized carbonyl iron particles (CIPs) subjected to cyclic compressive loading have been studied. Effects of pre-strains from 5 to 20%, strain amplitudes from 1 to 5%, and excitation frequencies from 10 to 50 Hz on the self-heating and dynamic mechanical response of the isotropic SRC were investigated. The self-heating temperatures were measured on the surface and at the center of cylindrical SRC specimens. The self-heating temperatures of the isotropic SRC samples showed a fast increase in an initial transient stage and the following isothermal stage. The temperature distribution in the isotropic SRC specimens was non-homogeneous and the temperature decreased from the center to sample edges. The self-heating temperatures of the isotropic SRC increased gradually with raising the strain amplitude and frequency. However, the difference between the internal and surface temperatures was slight for low strain amplitudes and frequencies, while it was significant for high strain amplitudes and frequencies. The temperatures of the isotropic SRC boosted rapidly with increasing the pre-strain to 10% and thereafter gained slightly. Although the isotropic SRC dynamic moduli reduced with the rise of the strain amplitude, they enhanced with increasing the pre-strain and frequency. Besides, the storage modulus of the isotropic SRC varied slightly with time, while the loss modulus reduced markedly especially at the initial period. The decrease in the loss modulus of the isotropic SRC under cyclic compressive loading is attributed to its self-heating temperature rise. A finite element simulation of the heat transfer in the SRC cylinder was conducted. The calculated temperatures in the SRC cylinder were in good agreement with the measured ones at different strain amplitudes and frequencies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Composite Materials

  • ISSN

    0021-9983

  • e-ISSN

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    28

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    4273-4292

  • Kód UT WoS článku

    000684364400001

  • EID výsledku v databázi Scopus

    2-s2.0-85112441341