Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00011655" target="_blank" >RIV/46747885:24210/24:00011655 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-4360/16/2/192" target="_blank" >https://www.mdpi.com/2073-4360/16/2/192</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym16020192" target="_blank" >10.3390/polym16020192</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends

  • Popis výsledku v původním jazyce

    The inherent brittleness of poly(lactic acid) (PLA) limits its use in a wider range of applications that require plastic deformation at higher stress levels. To overcome this, a series of poly(L-lactic acid) (PLLA)/biodegradable thermoplastic polyester elastomer (TPE) blends and their ternary blends with an ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer as a compatibilizer were prepared via melt blending to improve the poor impact strength and low ductility of PLAs. The thermal behavior, crystallinity, and miscibility of the binary and ternary blends were analyzed by differential scanning calorimetry (DSC). Tensile tests revealed a brittle–ductile transition when the binary PLLA/20TPE blend was compatibilized by 8.6 wt. % EMA-GMA, and the elongation at break increased from 10.9% to 227%. The “super tough” behavior of the PLLA/30TPE/12.9EMAGMA ternary blend with the incomplete break and notched impact strength of 89.2 kJ·m−2 was observed at an ambient temperature (23 ◦C). In addition, unnotched PLLA/40TPE samples showed a tremendous improvement in crack initiation resistance at sub-zero test conditions (−40 ◦C) with an impact strength of 178.1 kJ·m−2. Morphological observation by scanning electron microscopy (SEM) indicates that EMA-GMA is preferentially located at the PLLA/TPE interphase, where it is partially incorporated into the matrix and partially encapsulates the TPE. The excellent combination of good interfacial adhesion, debonding cavitation, and subsequent matrix shear yielding worked synergistically with the phase transition from sea–island to co-continuous morphology to form an interesting super-toughening mechanism.

  • Název v anglickém jazyce

    Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends

  • Popis výsledku anglicky

    The inherent brittleness of poly(lactic acid) (PLA) limits its use in a wider range of applications that require plastic deformation at higher stress levels. To overcome this, a series of poly(L-lactic acid) (PLLA)/biodegradable thermoplastic polyester elastomer (TPE) blends and their ternary blends with an ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) copolymer as a compatibilizer were prepared via melt blending to improve the poor impact strength and low ductility of PLAs. The thermal behavior, crystallinity, and miscibility of the binary and ternary blends were analyzed by differential scanning calorimetry (DSC). Tensile tests revealed a brittle–ductile transition when the binary PLLA/20TPE blend was compatibilized by 8.6 wt. % EMA-GMA, and the elongation at break increased from 10.9% to 227%. The “super tough” behavior of the PLLA/30TPE/12.9EMAGMA ternary blend with the incomplete break and notched impact strength of 89.2 kJ·m−2 was observed at an ambient temperature (23 ◦C). In addition, unnotched PLLA/40TPE samples showed a tremendous improvement in crack initiation resistance at sub-zero test conditions (−40 ◦C) with an impact strength of 178.1 kJ·m−2. Morphological observation by scanning electron microscopy (SEM) indicates that EMA-GMA is preferentially located at the PLLA/TPE interphase, where it is partially incorporated into the matrix and partially encapsulates the TPE. The excellent combination of good interfacial adhesion, debonding cavitation, and subsequent matrix shear yielding worked synergistically with the phase transition from sea–island to co-continuous morphology to form an interesting super-toughening mechanism.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    20

  • Strana od-do

  • Kód UT WoS článku

    001152829900001

  • EID výsledku v databázi Scopus

    2-s2.0-85183315005