Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BINSEG: An Efficient Speaker-based Segmentation Technique

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F06%3A%230001340" target="_blank" >RIV/46747885:24220/06:#0001340 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BINSEG: An Efficient Speaker-based Segmentation Technique

  • Popis výsledku v původním jazyce

    In this paper we present a new efficient approach to speaker-based audio stream segmentation. It employs binary segmentation technique that is well-known from mathematical statistic. Because integral part of this technique is hypotheses testing, we compare two well-founded (Maximum Likelihood, Informational) and one commonly used (BIC difference) approach for deriving speaker-change test statistics. Based on results of this comparison we propose both off-line and on-line speaker change detection algorithms (including way of effective training) that have merits of high accuracy and low computational costs. In simulated tests with artificially mixed data the on-line algorithm identified 95.7% of all speaker changes with precision of 96.9%. In tests donewith 30 hours of real broadcast news (in 9 languages) the average recall was 74.4% and precision 70.3%.

  • Název v anglickém jazyce

    BINSEG: An Efficient Speaker-based Segmentation Technique

  • Popis výsledku anglicky

    In this paper we present a new efficient approach to speaker-based audio stream segmentation. It employs binary segmentation technique that is well-known from mathematical statistic. Because integral part of this technique is hypotheses testing, we compare two well-founded (Maximum Likelihood, Informational) and one commonly used (BIC difference) approach for deriving speaker-change test statistics. Based on results of this comparison we propose both off-line and on-line speaker change detection algorithms (including way of effective training) that have merits of high accuracy and low computational costs. In simulated tests with artificially mixed data the on-line algorithm identified 95.7% of all speaker changes with precision of 96.9%. In tests donewith 30 hours of real broadcast news (in 9 languages) the average recall was 74.4% and precision 70.3%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1QS108040569" target="_blank" >1QS108040569: Asistenční, informační a komunikační služby s podporou vyspělých hlasových technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING

  • ISBN

    978-1-60423-449-7

  • ISSN

    1990-9772

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    ISCA-INST SPEECH COMMUNICATION ASSOC, C/O EMMANUELLE FOXONET, 4 RUE DES FAUVETTES, LIEU DIT LOUS TOURILS, BAIXAS, F-66390, FRANCE

  • Místo vydání

    Pittsburgh, USA

  • Místo konání akce

    Pittsburgh, USA

  • Datum konání akce

    1. 1. 2006

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku