Impact of Phonetic Annotation Precision on Automatic Speech Recognition Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F16%3A00000466" target="_blank" >RIV/46747885:24220/16:00000466 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TSP.2016.7760886" target="_blank" >http://dx.doi.org/10.1109/TSP.2016.7760886</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2016.7760886" target="_blank" >10.1109/TSP.2016.7760886</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Phonetic Annotation Precision on Automatic Speech Recognition Systems
Popis výsledku v původním jazyce
In this paper we study the impact of phonetic annotation precision on the accuracy of a state-of-the art ASR (automatic speech recognition) system. This issue becomes important especially if we want to port the system to a new language without spending much time by collecting, checking and annotating a large amount of acoustic data in the target language. First, we describe a series of experiments that demonstrate how inaccurate annotation influences word error rate of a gaussian-mixture model and deep-neural net based ASR. Our results show that even significantly inaccurate annotations allow to achieve fairly good results. On the other side, if we want to get really good performance, we should assure that the annotations are as precise as possible. Therefore, we describe methods that can do most of the annotation work in an almost automatic (iterative) way with a high precision. We demonstrate them on an ASR system that is being adapted from Czech language to Polish. We provide results achieved on Polish GlobalPhone and Clarin speech databases.
Název v anglickém jazyce
Impact of Phonetic Annotation Precision on Automatic Speech Recognition Systems
Popis výsledku anglicky
In this paper we study the impact of phonetic annotation precision on the accuracy of a state-of-the art ASR (automatic speech recognition) system. This issue becomes important especially if we want to port the system to a new language without spending much time by collecting, checking and annotating a large amount of acoustic data in the target language. First, we describe a series of experiments that demonstrate how inaccurate annotation influences word error rate of a gaussian-mixture model and deep-neural net based ASR. Our results show that even significantly inaccurate annotations allow to achieve fairly good results. On the other side, if we want to get really good performance, we should assure that the annotations are as precise as possible. Therefore, we describe methods that can do most of the annotation work in an almost automatic (iterative) way with a high precision. We demonstrate them on an ASR system that is being adapted from Czech language to Polish. We provide results achieved on Polish GlobalPhone and Clarin speech databases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TA04010199" target="_blank" >TA04010199: MULTILINMEDIA - Multilinguální platforma pro monitoring a analýzu multimédií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. of the 39th International Conference on Telecommunications and Signal Processing (TSP 2016)
ISBN
978-1-5090-1287-9
ISSN
1805-5435
e-ISSN
—
Počet stran výsledku
4
Strana od-do
311-314
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Rakousko, Vídeň
Místo konání akce
Rakousko, Vídeň
Datum konání akce
1. 1. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000390164000067