Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Helmholtz resonators systems treated with the nanofibrous membrane

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004213" target="_blank" >RIV/46747885:24220/17:00004213 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24620/17:00004213

  • Výsledek na webu

    <a href="https://www.iiav.org/archives_icsv_last/2017_icsv24/content/papers/papers/full_paper_278_20170413143517567.pdf" target="_blank" >https://www.iiav.org/archives_icsv_last/2017_icsv24/content/papers/papers/full_paper_278_20170413143517567.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Helmholtz resonators systems treated with the nanofibrous membrane

  • Popis výsledku v původním jazyce

    One of the current issues is a solution of an omnipresent background noise, which is really difficult to absorb in the area of low frequencies of sound waves. The basic principle of sound absorption deals with the fact that effectiveness of the sound absorbing material increases with its thickness. Absorbing sandwich-like solutions presented in this paper are based on a resonant principle of a nanofibrous membrane and they function successfully as slim broadband sound absorbing solutions. The resonant nanofibrous layer of insignificant thickness was prepared from a polymer solution of PA6 with the electrospinning method. Due to the possibility of resonating on its own resonant frequency the nanofibrous membrane is able to absorb critical lower sound frequencies. These unique properties come from the nature of nanofibrous layers - small fibrous diameter, respectively enormous surface area of the layer. This makes it possible to reach higher viscous loss inside the material. Optimal rigidity of the membrane then makes an acoustic system possible to vibrate easier. Thus were developed and optimized acoustic structures in the form of Helmholtz-based resonators - distributed cavity resonators, treated with the resonant nanofibrous membrane damped by the microfiber web. Material types and structural characteristics of the each acoustic component have been proposed. The earlier designed solutions were made and their sound absorption ability was estimated in the Two-microphone Impedance Tube. Hence the experimental study presented here was carried out on the basis of obtained sound absorption coefficients from the impedance tube. It turned out the acoustic systems with the nanofibrous layer increase value of sound absorption and move it to the range of lower frequencies. While the spatial demands of those absorption systems are decreased, sound absorption remains the same or higher.

  • Název v anglickém jazyce

    Helmholtz resonators systems treated with the nanofibrous membrane

  • Popis výsledku anglicky

    One of the current issues is a solution of an omnipresent background noise, which is really difficult to absorb in the area of low frequencies of sound waves. The basic principle of sound absorption deals with the fact that effectiveness of the sound absorbing material increases with its thickness. Absorbing sandwich-like solutions presented in this paper are based on a resonant principle of a nanofibrous membrane and they function successfully as slim broadband sound absorbing solutions. The resonant nanofibrous layer of insignificant thickness was prepared from a polymer solution of PA6 with the electrospinning method. Due to the possibility of resonating on its own resonant frequency the nanofibrous membrane is able to absorb critical lower sound frequencies. These unique properties come from the nature of nanofibrous layers - small fibrous diameter, respectively enormous surface area of the layer. This makes it possible to reach higher viscous loss inside the material. Optimal rigidity of the membrane then makes an acoustic system possible to vibrate easier. Thus were developed and optimized acoustic structures in the form of Helmholtz-based resonators - distributed cavity resonators, treated with the resonant nanofibrous membrane damped by the microfiber web. Material types and structural characteristics of the each acoustic component have been proposed. The earlier designed solutions were made and their sound absorption ability was estimated in the Two-microphone Impedance Tube. Hence the experimental study presented here was carried out on the basis of obtained sound absorption coefficients from the impedance tube. It turned out the acoustic systems with the nanofibrous layer increase value of sound absorption and move it to the range of lower frequencies. While the spatial demands of those absorption systems are decreased, sound absorption remains the same or higher.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10307 - Acoustics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    24th International Congress on Sound and Vibration, ICSV 2017; London; United Kingdom; 23 July 2017 through 27 July 2017; Code 12980

  • ISBN

    978-1-906913-27-4

  • ISSN

    2329-3675

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    International Institute of Acoustics and Vibration, IIAV

  • Místo vydání

    London; United Kingdom

  • Místo konání akce

    London

  • Datum konání akce

    1. 1. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku