Performance Analysis of Source Image Estimators in Blind Source Separation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004540" target="_blank" >RIV/46747885:24220/17:00004540 - isvavai.cz</a>
Výsledek na webu
<a href="http://xplorestaging.ieee.org/ielx7/78/7942328/07934340.pdf?arnumber=7934340" target="_blank" >http://xplorestaging.ieee.org/ielx7/78/7942328/07934340.pdf?arnumber=7934340</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/tsp.2017.2709269" target="_blank" >10.1109/tsp.2017.2709269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Analysis of Source Image Estimators in Blind Source Separation
Popis výsledku v původním jazyce
Blind methods often separate or identify signals or signal subspaces up to an unknown scaling factor. Sometimes it is necessary to cope with the scaling ambiguity, which can be done through reconstructing signals as they are received by sensors, because scales of the sensor responses (images) have known physical interpretations. In this paper, we analyze two approaches that are widely used for computing the sensor responses, especially, in Frequency-Domain Independent Component Analysis. One approach is the least-squares projection, while the other one assumes a regular mixing matrix and computes its inverse. Both estimators are invariant to the unknown scaling. Although frequently used, their differences were not studied yet. A goal of this work is to fill this gap. The estimators are compared through a theoretical study, perturbation analysis and simulations. We point to the fact that the estimators are equivalent when the separated signal subspaces are orthogonal, and vice versa. Two applications are shown, one of which demonstrates a case where the estimators yield substantially different results.
Název v anglickém jazyce
Performance Analysis of Source Image Estimators in Blind Source Separation
Popis výsledku anglicky
Blind methods often separate or identify signals or signal subspaces up to an unknown scaling factor. Sometimes it is necessary to cope with the scaling ambiguity, which can be done through reconstructing signals as they are received by sensors, because scales of the sensor responses (images) have known physical interpretations. In this paper, we analyze two approaches that are widely used for computing the sensor responses, especially, in Frequency-Domain Independent Component Analysis. One approach is the least-squares projection, while the other one assumes a regular mixing matrix and computes its inverse. Both estimators are invariant to the unknown scaling. Although frequently used, their differences were not studied yet. A goal of this work is to fill this gap. The estimators are compared through a theoretical study, perturbation analysis and simulations. We point to the fact that the estimators are equivalent when the separated signal subspaces are orthogonal, and vice versa. Two applications are shown, one of which demonstrates a case where the estimators yield substantially different results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-11898S" target="_blank" >GA14-11898S: Zlepšování řečového signálu pomocí částečně slepých metod za použití pole mikrofonů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Signal Processing
ISSN
1053-587X
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
4166-4176
Kód UT WoS článku
000404286900002
EID výsledku v databázi Scopus
2-s2.0-85020745841