Speech Activity Detection in Online Broadcast Transcription Using Deep Neural Networks and Weighted Finite State Transducers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004814" target="_blank" >RIV/46747885:24220/17:00004814 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICASSP.2017.7953200" target="_blank" >http://dx.doi.org/10.1109/ICASSP.2017.7953200</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICASSP.2017.7953200" target="_blank" >10.1109/ICASSP.2017.7953200</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speech Activity Detection in Online Broadcast Transcription Using Deep Neural Networks and Weighted Finite State Transducers
Popis výsledku v původním jazyce
In this paper, a new approach to online Speech Activity Detection (SAD) is proposed. This approach is designed for the use in a system that carries out 24/7 transcription of radio/TV broadcasts containing a large amount of non-speech segments, such as advertisements or music. To improve the robustness of detection, we adopt Deep Neural Networks (DNNs) trained on artificially created mixtures of speech and non-speech signals at desired levels of signal-to-noise ratio (SNR). An integral part of our approach is an online decoder based on Weighted Finite State Transducers (WFSTs); this decoder smooths the output from DNN. The employed transduction model is context-based, i.e., both speech and non-speech events are modeled using sequences of states. The presented experimental results show that our approach yields state-of-the-art results on standardized QUT-NOISE-TIMIT data set for SAD and, at the same time, it is capable of a) operating with low latency and b) reducing the computational demands and error rate of the target transcription system.
Název v anglickém jazyce
Speech Activity Detection in Online Broadcast Transcription Using Deep Neural Networks and Weighted Finite State Transducers
Popis výsledku anglicky
In this paper, a new approach to online Speech Activity Detection (SAD) is proposed. This approach is designed for the use in a system that carries out 24/7 transcription of radio/TV broadcasts containing a large amount of non-speech segments, such as advertisements or music. To improve the robustness of detection, we adopt Deep Neural Networks (DNNs) trained on artificially created mixtures of speech and non-speech signals at desired levels of signal-to-noise ratio (SNR). An integral part of our approach is an online decoder based on Weighted Finite State Transducers (WFSTs); this decoder smooths the output from DNN. The employed transduction model is context-based, i.e., both speech and non-speech events are modeled using sequences of states. The presented experimental results show that our approach yields state-of-the-art results on standardized QUT-NOISE-TIMIT data set for SAD and, at the same time, it is capable of a) operating with low latency and b) reducing the computational demands and error rate of the target transcription system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/TA04010199" target="_blank" >TA04010199: MULTILINMEDIA - Multilinguální platforma pro monitoring a analýzu multimédií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE IICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsnternational Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
ISBN
978-1-5090-4117-6
ISSN
1520-6149
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5460-5464
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
USA
Místo konání akce
New Orleans, USA
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000414286205124