Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The classic differential evolution algorithm and its convergence properties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00005216" target="_blank" >RIV/46747885:24220/17:00005216 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24510/17:00005216

  • Výsledek na webu

    <a href="http://am.math.cas.cz/am62-2/6.html" target="_blank" >http://am.math.cas.cz/am62-2/6.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/AM.2017.0274-16" target="_blank" >10.21136/AM.2017.0274-16</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The classic differential evolution algorithm and its convergence properties

  • Popis výsledku v původním jazyce

    Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the classic differential evolution algorithm. This modification limits the possible premature convergence to local minima and ensures the asymptotic global convergence. We also introduce concepts that are necessary for the subsequent proof of the asymptotic global convergence of the modified algorithm. We test the classic and modified algorithm by numerical experiments and compare the efficiency of finding the global minimum for both algorithms. The tests confirm that the modified algorithm is significantly more efficient with respect to the global convergence than the classic algorithm.

  • Název v anglickém jazyce

    The classic differential evolution algorithm and its convergence properties

  • Popis výsledku anglicky

    Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the classic differential evolution algorithm. This modification limits the possible premature convergence to local minima and ensures the asymptotic global convergence. We also introduce concepts that are necessary for the subsequent proof of the asymptotic global convergence of the modified algorithm. We test the classic and modified algorithm by numerical experiments and compare the efficiency of finding the global minimum for both algorithms. The tests confirm that the modified algorithm is significantly more efficient with respect to the global convergence than the classic algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    12

  • Strana od-do

    197-208

  • Kód UT WoS článku

    000400889400004

  • EID výsledku v databázi Scopus

    2-s2.0-85015700986