The classic differential evolution algorithm and its convergence properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00005216" target="_blank" >RIV/46747885:24220/17:00005216 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24510/17:00005216
Výsledek na webu
<a href="http://am.math.cas.cz/am62-2/6.html" target="_blank" >http://am.math.cas.cz/am62-2/6.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2017.0274-16" target="_blank" >10.21136/AM.2017.0274-16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The classic differential evolution algorithm and its convergence properties
Popis výsledku v původním jazyce
Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the classic differential evolution algorithm. This modification limits the possible premature convergence to local minima and ensures the asymptotic global convergence. We also introduce concepts that are necessary for the subsequent proof of the asymptotic global convergence of the modified algorithm. We test the classic and modified algorithm by numerical experiments and compare the efficiency of finding the global minimum for both algorithms. The tests confirm that the modified algorithm is significantly more efficient with respect to the global convergence than the classic algorithm.
Název v anglickém jazyce
The classic differential evolution algorithm and its convergence properties
Popis výsledku anglicky
Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the classic differential evolution algorithm. This modification limits the possible premature convergence to local minima and ensures the asymptotic global convergence. We also introduce concepts that are necessary for the subsequent proof of the asymptotic global convergence of the modified algorithm. We test the classic and modified algorithm by numerical experiments and compare the efficiency of finding the global minimum for both algorithms. The tests confirm that the modified algorithm is significantly more efficient with respect to the global convergence than the classic algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
197-208
Kód UT WoS článku
000400889400004
EID výsledku v databázi Scopus
2-s2.0-85015700986