Large-Eddy Simulation of Internal Flow through Human Vocal Folds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00005329" target="_blank" >RIV/46747885:24220/18:00005329 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.epj-conferences.org/articles/epjconf/abs/2018/15/contents/contents.html" target="_blank" >https://www.epj-conferences.org/articles/epjconf/abs/2018/15/contents/contents.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/201818002054" target="_blank" >10.1051/epjconf/201818002054</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large-Eddy Simulation of Internal Flow through Human Vocal Folds
Popis výsledku v původním jazyce
The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on human-like computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM, which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models, which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.
Název v anglickém jazyce
Large-Eddy Simulation of Internal Flow through Human Vocal Folds
Popis výsledku anglicky
The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on human-like computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM, which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models, which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences
ISBN
—
ISSN
2100-014X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
358-362
Název nakladatele
EDP Sciences
Místo vydání
—
Místo konání akce
Mikulov
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—