Experimenting With Lipreading For Large Vocabulary Continuous Speech Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006135" target="_blank" >RIV/46747885:24220/18:00006135 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s12193-018-0266-2" target="_blank" >http://dx.doi.org/10.1007/s12193-018-0266-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12193-018-0266-2" target="_blank" >10.1007/s12193-018-0266-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimenting With Lipreading For Large Vocabulary Continuous Speech Recognition
Popis výsledku v původním jazyce
Vast majority of current research in the area of audiovisual speech recognition via lipreading from frontal face videos focuses on simple cases such as isolated phrase recognition or structured speech, where the vocabulary is limited to several tens of units. In this paper, we diverge from these traditional applications and investigate the effect of incorporating the visual and also depth information in the task of continuous speech recognition with vocabulary size ranging from several hundred to half a million words. To this end, we evaluate various visual speech parametrizations, both existing and novel, that are designed to capture different kind of information in the video and depth signals. The experiments are conducted on a moderate sized dataset of 54 speakers, each uttering 100 sentences in Czech language. Both the video and depth data was captured by the Microsoft Kinect device. We show that even for large vocabularies the visual signal contains enough information to improve the word accuracy up to 22% relatively to the acoustic-only recognition. Somewhat surprisingly, a relative improvement of up to 16% has also been reached using the interpolated depth data.
Název v anglickém jazyce
Experimenting With Lipreading For Large Vocabulary Continuous Speech Recognition
Popis výsledku anglicky
Vast majority of current research in the area of audiovisual speech recognition via lipreading from frontal face videos focuses on simple cases such as isolated phrase recognition or structured speech, where the vocabulary is limited to several tens of units. In this paper, we diverge from these traditional applications and investigate the effect of incorporating the visual and also depth information in the task of continuous speech recognition with vocabulary size ranging from several hundred to half a million words. To this end, we evaluate various visual speech parametrizations, both existing and novel, that are designed to capture different kind of information in the video and depth signals. The experiments are conducted on a moderate sized dataset of 54 speakers, each uttering 100 sentences in Czech language. Both the video and depth data was captured by the Microsoft Kinect device. We show that even for large vocabularies the visual signal contains enough information to improve the word accuracy up to 22% relatively to the acoustic-only recognition. Somewhat surprisingly, a relative improvement of up to 16% has also been reached using the interpolated depth data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal on Multimodal User Interfaces
ISSN
1783-7677
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
309-318
Kód UT WoS článku
000448519400005
EID výsledku v databázi Scopus
2-s2.0-85049998576