Adaptive Control of Meniscus Velocity in Continuous Caster based on NARX Neural Network Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F19%3A00007327" target="_blank" >RIV/46747885:24220/19:00007327 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ifacol.2019.12.653" target="_blank" >https://doi.org/10.1016/j.ifacol.2019.12.653</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2019.12.653" target="_blank" >10.1016/j.ifacol.2019.12.653</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive Control of Meniscus Velocity in Continuous Caster based on NARX Neural Network Model
Popis výsledku v původním jazyce
Meniscus velocity in continuous casting is critical in determining the quality of the steel. Due to the complex nature of the various interacting phenomena in the process, designing model-based controllers can prove to be a challenge. In this paper a NARX neural network model is trained to describe the complex relationship between the applied current to an Electromagnetic Brake (EMBr) and the measured meniscus velocity. The data for the model is obtained using a laboratory scale continuous casting plant. Adaptive Model Predictive Control (MPC) was used to deal with the non-linearity of the model by adapting the prediction model to the different operating conditions. The controller uses the EMBr as an actuator to keep the meniscus velocity within the optimum range, and reject disturbances that occur during the casting process such as changing the casting speed.
Název v anglickém jazyce
Adaptive Control of Meniscus Velocity in Continuous Caster based on NARX Neural Network Model
Popis výsledku anglicky
Meniscus velocity in continuous casting is critical in determining the quality of the steel. Due to the complex nature of the various interacting phenomena in the process, designing model-based controllers can prove to be a challenge. In this paper a NARX neural network model is trained to describe the complex relationship between the applied current to an Electromagnetic Brake (EMBr) and the measured meniscus velocity. The data for the model is obtained using a laboratory scale continuous casting plant. Adaptive Model Predictive Control (MPC) was used to deal with the non-linearity of the model by adapting the prediction model to the different operating conditions. The controller uses the EMBr as an actuator to keep the meniscus velocity within the optimum range, and reject disturbances that occur during the casting process such as changing the casting speed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFAC-PapersOnLine (13th IFAC Workshop on Adaptive and Learning Control Systems ALCOS 2019)
ISBN
—
ISSN
24058963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
222-227
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Winchester
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507495600038