Dictionary-Based Sparse Reconstruction of Incomplete Relative Transfer Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00008827" target="_blank" >RIV/46747885:24220/21:00008827 - isvavai.cz</a>
Výsledek na webu
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2021/10/Dictionary_Based_Sparse_Reconstruction_of_Incomplete_Relative_Transfer_Functions.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2021/10/Dictionary_Based_Sparse_Reconstruction_of_Incomplete_Relative_Transfer_Functions.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616062" target="_blank" >10.23919/EUSIPCO54536.2021.9616062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dictionary-Based Sparse Reconstruction of Incomplete Relative Transfer Functions
Popis výsledku v původním jazyce
For estimating the relative transfer function (RTF) of a speaker from noisy multi-microphone recordings, several statistical methods have been proposed. The estimation accuracy is different over frequencies, which mostly depends on the frequency-dependent signal-to-noise ratio (SNR). Provided that the low-SNR frequencies are identified, the corresponding values of the estimated RTF can be replaced through interpolation using the frequencies with high SNR. In this study, we explore interpolation techniques based on the sparse reconstruction of an incomplete RTF which is obtained when low-SNR values are neglected. Compared to previous attempts where the approximate sparsity of the time-domain representation of RTF (relative impulse response) is exploited, in this paper, we use learned sparse dictionaries trained on dense measurements of RTFs within a confined area of the target speaker. These measurements are obtained from the recently released MIRaGe database acquired in a real room.
Název v anglickém jazyce
Dictionary-Based Sparse Reconstruction of Incomplete Relative Transfer Functions
Popis výsledku anglicky
For estimating the relative transfer function (RTF) of a speaker from noisy multi-microphone recordings, several statistical methods have been proposed. The estimation accuracy is different over frequencies, which mostly depends on the frequency-dependent signal-to-noise ratio (SNR). Provided that the low-SNR frequencies are identified, the corresponding values of the estimated RTF can be replaced through interpolation using the frequencies with high SNR. In this study, we explore interpolation techniques based on the sparse reconstruction of an incomplete RTF which is obtained when low-SNR values are neglected. Compared to previous attempts where the approximate sparsity of the time-domain representation of RTF (relative impulse response) is exploited, in this paper, we use learned sparse dictionaries trained on dense measurements of RTFs within a confined area of the target speaker. These measurements are obtained from the recently released MIRaGe database acquired in a real room.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-17720S" target="_blank" >GA20-17720S: Pokročilé modely směsí pro slepou extrakci signálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
European Signal Processing Conference (EUSIPCO 2021)
ISBN
978-908279706-0
ISSN
2219-5491
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1005-1009
Název nakladatele
Eurasip
Místo vydání
Ireland
Místo konání akce
Dublin
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000764066600199