Inverse Hydraulic And Transport Model of Groundwater Recovery Experiment Using Mixed-dimensional Concept
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F21%3A00008888" target="_blank" >RIV/46747885:24220/21:00008888 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41330/21:88586
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1365160921001209" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1365160921001209</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijrmms.2021.104734" target="_blank" >10.1016/j.ijrmms.2021.104734</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inverse Hydraulic And Transport Model of Groundwater Recovery Experiment Using Mixed-dimensional Concept
Popis výsledku v původním jazyce
Understanding evolution of groundwater hydraulic and chemical conditions is important for safety assessment of radioactive waste disposal. Perturbations to groundwater can occur due to the construction and operation of the underground facility. The initial perturbations and their recovery after the tunnel closure were observed in the Groundwater REcovery Experiment in Tunnel (GREET) in Mizunami, Japan, at 500-m depth in granite. In a 100-m-long tunnel, 50 m was isolated by building a plug. Aside from other measurement and exploration data, groundwater pressures and chemical composition were monitored in boreholes with 24 packer sections. This work used numerical modelling to better understand and be able to predict the observed water flow and solute transport phenomena. The model covered 100-m scale around the tunnel and was divided into a continuum far-field domain and a near-field domain with deterministic discrete fractures and matrix blocks. A mixed-hybrid finite element solution was used with independent degrees of freedom for 3D and 2D elements. Modelling started with a blind prediction followed by a calibration (inverse model) for drainage and flooding experiment phases. The inverse hydraulic model fitted the more/less communicating sections and estimated transmissivity and conductivity parameters that are consistent for the two phases. The model sensitivity on transport parameters was insufficient for the inverse model, which can use only simplified measured evolution to avoid noisy data.
Název v anglickém jazyce
Inverse Hydraulic And Transport Model of Groundwater Recovery Experiment Using Mixed-dimensional Concept
Popis výsledku anglicky
Understanding evolution of groundwater hydraulic and chemical conditions is important for safety assessment of radioactive waste disposal. Perturbations to groundwater can occur due to the construction and operation of the underground facility. The initial perturbations and their recovery after the tunnel closure were observed in the Groundwater REcovery Experiment in Tunnel (GREET) in Mizunami, Japan, at 500-m depth in granite. In a 100-m-long tunnel, 50 m was isolated by building a plug. Aside from other measurement and exploration data, groundwater pressures and chemical composition were monitored in boreholes with 24 packer sections. This work used numerical modelling to better understand and be able to predict the observed water flow and solute transport phenomena. The model covered 100-m scale around the tunnel and was divided into a continuum far-field domain and a near-field domain with deterministic discrete fractures and matrix blocks. A mixed-hybrid finite element solution was used with independent degrees of freedom for 3D and 2D elements. Modelling started with a blind prediction followed by a calibration (inverse model) for drainage and flooding experiment phases. The inverse hydraulic model fitted the more/less communicating sections and estimated transmissivity and conductivity parameters that are consistent for the two phases. The model sensitivity on transport parameters was insufficient for the inverse model, which can use only simplified measured evolution to avoid noisy data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Rock Mechanics and Mining Sciences
ISSN
1365-1609
e-ISSN
—
Svazek periodika
144
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000675895200004
EID výsledku v databázi Scopus
2-s2.0-85107152479