Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F22%3A00009081" target="_blank" >RIV/46747885:24220/22:00009081 - isvavai.cz</a>
Výsledek na webu
<a href="https://asmp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13636-021-00231-6.pdf" target="_blank" >https://asmp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13636-021-00231-6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13636-021-00231-6" target="_blank" >10.1186/s13636-021-00231-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker
Popis výsledku v původním jazyce
We propose a novel algorithm for Blind Source Extraction (BSE) of a moving acoustic source recorded by multiple microphones. The algorithm is based on Independent Vector Extraction (IVE) where the contrast function is optimized using the auxiliary function-based technique. The recently proposed Constant Separating Vector (CSV) mixing model is assumed, which allows for movements of the extracted source within the analyzed batch of recordings. We provide a practical explanation of how the CSV model works when extracting a moving acoustic source. Then, the proposed algorithm is experimentally verified on the task of blind extraction of a moving speaker. The algorithm is compared with state-of-the-art blind methods and with an adaptive BSE algorithm which processes data in a sequential manner. The results confirm that the proposed algorithm can extract the moving speaker better than the BSE methods based on the conventional mixing model and that it achieves improved extraction accuracy than the adaptive method.
Název v anglickém jazyce
Auxiliary Function-Based Algorithm for Blind Extraction of a Moving Speaker
Popis výsledku anglicky
We propose a novel algorithm for Blind Source Extraction (BSE) of a moving acoustic source recorded by multiple microphones. The algorithm is based on Independent Vector Extraction (IVE) where the contrast function is optimized using the auxiliary function-based technique. The recently proposed Constant Separating Vector (CSV) mixing model is assumed, which allows for movements of the extracted source within the analyzed batch of recordings. We provide a practical explanation of how the CSV model works when extracting a moving acoustic source. Then, the proposed algorithm is experimentally verified on the task of blind extraction of a moving speaker. The algorithm is compared with state-of-the-art blind methods and with an adaptive BSE algorithm which processes data in a sequential manner. The results confirm that the proposed algorithm can extract the moving speaker better than the BSE methods based on the conventional mixing model and that it achieves improved extraction accuracy than the adaptive method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING
ISSN
1687-4722
e-ISSN
—
Svazek periodika
2022
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000738591200001
EID výsledku v databázi Scopus
2-s2.0-85122295670