Target Speech Extraction: Independent Vector Extraction Guided by Supervised Speaker Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F22%3A00009853" target="_blank" >RIV/46747885:24220/22:00009853 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9829828" target="_blank" >https://ieeexplore.ieee.org/document/9829828</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASLP.2022.3190739" target="_blank" >10.1109/TASLP.2022.3190739</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Target Speech Extraction: Independent Vector Extraction Guided by Supervised Speaker Identification
Popis výsledku v původním jazyce
This manuscript proposes a novel robust procedure for the extraction of a speaker of interest (SOI) from a mixture of audio sources. The estimation of the SOI is performed via independent vector extraction (IVE). Since the blind IVE cannot distinguish the target source by itself, it is guided towards the SOI via frame-wise speaker identification based on deep learning. Still, an incorrect speaker can be extracted due to guidance failings, especially when processing challenging data. To identify such cases, we propose a criterion for non-intrusively assessing the estimated speaker. It utilizes the same model as the speaker identification, so no additional training is required. When incorrect extraction is detected, we propose a ``deflation‘‘ step in which the incorrect source is subtracted from the mixture and, subsequently, another attempt to extract the SOI is performed. The process is repeated until successful extraction is achieved. The proposed procedure is experimentally tested on artificial and real-world datasets containing challenging phenomena: source movements, reverberation, transient noise, or microphone failures. The method is compared with state-of-the-art blind algorithms as well as with current fully supervised deep learning-based methods.
Název v anglickém jazyce
Target Speech Extraction: Independent Vector Extraction Guided by Supervised Speaker Identification
Popis výsledku anglicky
This manuscript proposes a novel robust procedure for the extraction of a speaker of interest (SOI) from a mixture of audio sources. The estimation of the SOI is performed via independent vector extraction (IVE). Since the blind IVE cannot distinguish the target source by itself, it is guided towards the SOI via frame-wise speaker identification based on deep learning. Still, an incorrect speaker can be extracted due to guidance failings, especially when processing challenging data. To identify such cases, we propose a criterion for non-intrusively assessing the estimated speaker. It utilizes the same model as the speaker identification, so no additional training is required. When incorrect extraction is detected, we propose a ``deflation‘‘ step in which the incorrect source is subtracted from the mixture and, subsequently, another attempt to extract the SOI is performed. The process is repeated until successful extraction is achieved. The proposed procedure is experimentally tested on artificial and real-world datasets containing challenging phenomena: source movements, reverberation, transient noise, or microphone failures. The method is compared with state-of-the-art blind algorithms as well as with current fully supervised deep learning-based methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING
ISSN
2329-9290
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
2295-2309
Kód UT WoS článku
000831126700006
EID výsledku v databázi Scopus
2-s2.0-85135228612