Lexicon-based vs. Lexicon-free ASR for Norwegian Parliament Speech Transcription
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F22%3A00009900" target="_blank" >RIV/46747885:24220/22:00009900 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-16270-1_33" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16270-1_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16270-1_33" target="_blank" >10.1007/978-3-031-16270-1_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lexicon-based vs. Lexicon-free ASR for Norwegian Parliament Speech Transcription
Popis výsledku v původním jazyce
Norwegian is a challenging language for automatic speech recognition research because it has two written standards (Bokmal and Nynorsk) and a large number of distinct dialects, from which none has status of an official spoken norm. A traditional lexicon-based approach to ASR leads to a huge lexicon (because of the two standards and also due to compound words) with many spelling and pronunciation variants, and consequently to a large (and sparse) language model (LM). We have built a system with 601k-word lexicon and an acoustic model (AM) based on several types of neural networks and compare its performance with a lexicon-free end-to-end system developed in the ESPnet framework. For evaluation we use a publically available dataset of Norwegian parliament speeches that offers 100 h for training and 12 h for testing. In spite of this rather limited training resource, the lexicon-free approach yields significantly better results (13.0% word-error rate) compared to the best system with the lexicon, LM and neural network AM (that achieved 22.5% WER).
Název v anglickém jazyce
Lexicon-based vs. Lexicon-free ASR for Norwegian Parliament Speech Transcription
Popis výsledku anglicky
Norwegian is a challenging language for automatic speech recognition research because it has two written standards (Bokmal and Nynorsk) and a large number of distinct dialects, from which none has status of an official spoken norm. A traditional lexicon-based approach to ASR leads to a huge lexicon (because of the two standards and also due to compound words) with many spelling and pronunciation variants, and consequently to a large (and sparse) language model (LM). We have built a system with 601k-word lexicon and an acoustic model (AM) based on several types of neural networks and compare its performance with a lexicon-free end-to-end system developed in the ESPnet framework. For evaluation we use a publically available dataset of Norwegian parliament speeches that offers 100 h for training and 12 h for testing. In spite of this rather limited training resource, the lexicon-free approach yields significantly better results (13.0% word-error rate) compared to the best system with the lexicon, LM and neural network AM (that achieved 22.5% WER).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TO01000027" target="_blank" >TO01000027: NORDTRANS - Technologie pro automatický přepis řeči ve vybraných severských jazycích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-303116269-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
401-409
Název nakladatele
SPRINGER-VERLAG BERLIN
Místo vydání
—
Místo konání akce
Brno
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000866222300033