Data collecting, analysis, classification methods, and approaches of the road pavement defects detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F23%3A00011424" target="_blank" >RIV/46747885:24220/23:00011424 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10253171" target="_blank" >https://ieeexplore.ieee.org/document/10253171</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICECCME57830.2023.10253171" target="_blank" >10.1109/ICECCME57830.2023.10253171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data collecting, analysis, classification methods, and approaches of the road pavement defects detection
Popis výsledku v původním jazyce
Imagining different spheres such as industry, medicine, education, and others undigitized nowadays is impossible. Wide digitalization leads to the significant growth of various data amounts. The data processing and analysis issue became a real challenge. This work is intended to show the author’s vision of the probable methods and solutions for the data array analysis. The article touches on accelerometer data analysis. It was decided to take road pavement defects identification and classification issue as a practical task to show the implementation of the theoretical assumptions. In this paper, the authors demonstrate the application of Recurrent Neural Networks such as Long Short-Term Memory Networks (LSTM), Convolutional Neural Networks LSTM (CNN-LSTM), and Convolutional LSTM (ConvLSTM) in the context of road pavement binary classification (defect or not a defect). Experiments have shown that sophisticated architectures (CNN-LSTM and ConvLSTM) compared to the basic LSTM have an 8-11% larger recall value; at the same time, comparing CNN-LSTM and ConvLSTM, according to the results of experiments, ConvLSTM has up to 13% increase in the precision metric, that is the best result among three Neural Networks described in the paper. Moreover, such aspects as the influence of the accelerometer position on the sensitivity of the sensor and acceleration data sets were also discussed.
Název v anglickém jazyce
Data collecting, analysis, classification methods, and approaches of the road pavement defects detection
Popis výsledku anglicky
Imagining different spheres such as industry, medicine, education, and others undigitized nowadays is impossible. Wide digitalization leads to the significant growth of various data amounts. The data processing and analysis issue became a real challenge. This work is intended to show the author’s vision of the probable methods and solutions for the data array analysis. The article touches on accelerometer data analysis. It was decided to take road pavement defects identification and classification issue as a practical task to show the implementation of the theoretical assumptions. In this paper, the authors demonstrate the application of Recurrent Neural Networks such as Long Short-Term Memory Networks (LSTM), Convolutional Neural Networks LSTM (CNN-LSTM), and Convolutional LSTM (ConvLSTM) in the context of road pavement binary classification (defect or not a defect). Experiments have shown that sophisticated architectures (CNN-LSTM and ConvLSTM) compared to the basic LSTM have an 8-11% larger recall value; at the same time, comparing CNN-LSTM and ConvLSTM, according to the results of experiments, ConvLSTM has up to 13% increase in the precision metric, that is the best result among three Neural Networks described in the paper. Moreover, such aspects as the influence of the accelerometer position on the sensitivity of the sensor and acceleration data sets were also discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering
ISBN
979-8-3503-2297-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Tenerife, Canary Islands, Spain
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—