Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data collecting, analysis, classification methods, and approaches of the road pavement defects detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F23%3A00011424" target="_blank" >RIV/46747885:24220/23:00011424 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10253171" target="_blank" >https://ieeexplore.ieee.org/document/10253171</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICECCME57830.2023.10253171" target="_blank" >10.1109/ICECCME57830.2023.10253171</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data collecting, analysis, classification methods, and approaches of the road pavement defects detection

  • Popis výsledku v původním jazyce

    Imagining different spheres such as industry, medicine, education, and others undigitized nowadays is impossible. Wide digitalization leads to the significant growth of various data amounts. The data processing and analysis issue became a real challenge. This work is intended to show the author’s vision of the probable methods and solutions for the data array analysis. The article touches on accelerometer data analysis. It was decided to take road pavement defects identification and classification issue as a practical task to show the implementation of the theoretical assumptions. In this paper, the authors demonstrate the application of Recurrent Neural Networks such as Long Short-Term Memory Networks (LSTM), Convolutional Neural Networks LSTM (CNN-LSTM), and Convolutional LSTM (ConvLSTM) in the context of road pavement binary classification (defect or not a defect). Experiments have shown that sophisticated architectures (CNN-LSTM and ConvLSTM) compared to the basic LSTM have an 8-11% larger recall value; at the same time, comparing CNN-LSTM and ConvLSTM, according to the results of experiments, ConvLSTM has up to 13% increase in the precision metric, that is the best result among three Neural Networks described in the paper. Moreover, such aspects as the influence of the accelerometer position on the sensitivity of the sensor and acceleration data sets were also discussed.

  • Název v anglickém jazyce

    Data collecting, analysis, classification methods, and approaches of the road pavement defects detection

  • Popis výsledku anglicky

    Imagining different spheres such as industry, medicine, education, and others undigitized nowadays is impossible. Wide digitalization leads to the significant growth of various data amounts. The data processing and analysis issue became a real challenge. This work is intended to show the author’s vision of the probable methods and solutions for the data array analysis. The article touches on accelerometer data analysis. It was decided to take road pavement defects identification and classification issue as a practical task to show the implementation of the theoretical assumptions. In this paper, the authors demonstrate the application of Recurrent Neural Networks such as Long Short-Term Memory Networks (LSTM), Convolutional Neural Networks LSTM (CNN-LSTM), and Convolutional LSTM (ConvLSTM) in the context of road pavement binary classification (defect or not a defect). Experiments have shown that sophisticated architectures (CNN-LSTM and ConvLSTM) compared to the basic LSTM have an 8-11% larger recall value; at the same time, comparing CNN-LSTM and ConvLSTM, according to the results of experiments, ConvLSTM has up to 13% increase in the precision metric, that is the best result among three Neural Networks described in the paper. Moreover, such aspects as the influence of the accelerometer position on the sensitivity of the sensor and acceleration data sets were also discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering

  • ISBN

    979-8-3503-2297-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

  • Místo konání akce

    Tenerife, Canary Islands, Spain

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku