A scenario-based genetic algorithm for controlling supercapacitor aging and degradation in the industry 4.0 era
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012107" target="_blank" >RIV/46747885:24220/24:00012107 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24410/24:00012107 RIV/46747885:24620/24:00012107
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197624001738?dgcid=coauthor#ack0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197624001738?dgcid=coauthor#ack0010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2024.108015" target="_blank" >10.1016/j.engappai.2024.108015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A scenario-based genetic algorithm for controlling supercapacitor aging and degradation in the industry 4.0 era
Popis výsledku v původním jazyce
Electric double layer capacitors (EDLCs) are promising energy storage solutions, yet aging and degradation issues impede reliability and lifespan. The research proposes integrated simulation, modeling, and optimization to actively control EDLC degradation during charge-discharge cycles, mathematically modeling and simulating electrical and aging dynamics. These aging simulations are coupled with a genetic algorithm (GA) optimization routine that identifies the optimal combinations of influential EDLC parameters like internal resistance and capacitance for mitigating deterioration. Equivalent circuit models quantify electrical signatures, as aging factors induce gradual drifts in capacitance and resistance during thousands of simulated operational cycles. These MATLAB simulations effectively capture aging phenomena noted in real EDLCs in terms of measurable capacitance fading and resistance growth trends over continual usage in line with experimental data. The GA optimization subsequently determines optimal charging voltage ranges and achievable reductions in charge/discharge asymmetry by over 70 % that significantly enhance lifespan trajectories through aging control under similar test conditions. The technique‘s efficacy is further ascertained through systematic tuning of GA parameters like mutation rates and population sizes using Taguchi experimental models. The findings showcase superior optimization outcomes for larger populations and lower mutation probabilities. The research integrates digital twin for rapid evaluations, addressing reliability challenges via computational aging control. The flexible modeling platform enables customized what-if analyses for EDLC designers, aiding in material, cycling, and duty cycle exploration. This aging mitigation approach offers simulation-driven insights and automated optimization tools to extend the operational duration of high-performance EDLCs.
Název v anglickém jazyce
A scenario-based genetic algorithm for controlling supercapacitor aging and degradation in the industry 4.0 era
Popis výsledku anglicky
Electric double layer capacitors (EDLCs) are promising energy storage solutions, yet aging and degradation issues impede reliability and lifespan. The research proposes integrated simulation, modeling, and optimization to actively control EDLC degradation during charge-discharge cycles, mathematically modeling and simulating electrical and aging dynamics. These aging simulations are coupled with a genetic algorithm (GA) optimization routine that identifies the optimal combinations of influential EDLC parameters like internal resistance and capacitance for mitigating deterioration. Equivalent circuit models quantify electrical signatures, as aging factors induce gradual drifts in capacitance and resistance during thousands of simulated operational cycles. These MATLAB simulations effectively capture aging phenomena noted in real EDLCs in terms of measurable capacitance fading and resistance growth trends over continual usage in line with experimental data. The GA optimization subsequently determines optimal charging voltage ranges and achievable reductions in charge/discharge asymmetry by over 70 % that significantly enhance lifespan trajectories through aging control under similar test conditions. The technique‘s efficacy is further ascertained through systematic tuning of GA parameters like mutation rates and population sizes using Taguchi experimental models. The findings showcase superior optimization outcomes for larger populations and lower mutation probabilities. The research integrates digital twin for rapid evaluations, addressing reliability challenges via computational aging control. The flexible modeling platform enables customized what-if analyses for EDLC designers, aiding in material, cycling, and duty cycle exploration. This aging mitigation approach offers simulation-driven insights and automated optimization tools to extend the operational duration of high-performance EDLCs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023066" target="_blank" >LM2023066: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
—
Svazek periodika
133
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001207952200001
EID výsledku v databázi Scopus
2-s2.0-85186383831