Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A scenario-based genetic algorithm for controlling supercapacitor aging and degradation in the industry 4.0 era

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012107" target="_blank" >RIV/46747885:24220/24:00012107 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24410/24:00012107 RIV/46747885:24620/24:00012107

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0952197624001738?dgcid=coauthor#ack0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197624001738?dgcid=coauthor#ack0010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2024.108015" target="_blank" >10.1016/j.engappai.2024.108015</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A scenario-based genetic algorithm for controlling supercapacitor aging and degradation in the industry 4.0 era

  • Popis výsledku v původním jazyce

    Electric double layer capacitors (EDLCs) are promising energy storage solutions, yet aging and degradation issues impede reliability and lifespan. The research proposes integrated simulation, modeling, and optimization to actively control EDLC degradation during charge-discharge cycles, mathematically modeling and simulating electrical and aging dynamics. These aging simulations are coupled with a genetic algorithm (GA) optimization routine that identifies the optimal combinations of influential EDLC parameters like internal resistance and capacitance for mitigating deterioration. Equivalent circuit models quantify electrical signatures, as aging factors induce gradual drifts in capacitance and resistance during thousands of simulated operational cycles. These MATLAB simulations effectively capture aging phenomena noted in real EDLCs in terms of measurable capacitance fading and resistance growth trends over continual usage in line with experimental data. The GA optimization subsequently determines optimal charging voltage ranges and achievable reductions in charge/discharge asymmetry by over 70 % that significantly enhance lifespan trajectories through aging control under similar test conditions. The technique‘s efficacy is further ascertained through systematic tuning of GA parameters like mutation rates and population sizes using Taguchi experimental models. The findings showcase superior optimization outcomes for larger populations and lower mutation probabilities. The research integrates digital twin for rapid evaluations, addressing reliability challenges via computational aging control. The flexible modeling platform enables customized what-if analyses for EDLC designers, aiding in material, cycling, and duty cycle exploration. This aging mitigation approach offers simulation-driven insights and automated optimization tools to extend the operational duration of high-performance EDLCs.

  • Název v anglickém jazyce

    A scenario-based genetic algorithm for controlling supercapacitor aging and degradation in the industry 4.0 era

  • Popis výsledku anglicky

    Electric double layer capacitors (EDLCs) are promising energy storage solutions, yet aging and degradation issues impede reliability and lifespan. The research proposes integrated simulation, modeling, and optimization to actively control EDLC degradation during charge-discharge cycles, mathematically modeling and simulating electrical and aging dynamics. These aging simulations are coupled with a genetic algorithm (GA) optimization routine that identifies the optimal combinations of influential EDLC parameters like internal resistance and capacitance for mitigating deterioration. Equivalent circuit models quantify electrical signatures, as aging factors induce gradual drifts in capacitance and resistance during thousands of simulated operational cycles. These MATLAB simulations effectively capture aging phenomena noted in real EDLCs in terms of measurable capacitance fading and resistance growth trends over continual usage in line with experimental data. The GA optimization subsequently determines optimal charging voltage ranges and achievable reductions in charge/discharge asymmetry by over 70 % that significantly enhance lifespan trajectories through aging control under similar test conditions. The technique‘s efficacy is further ascertained through systematic tuning of GA parameters like mutation rates and population sizes using Taguchi experimental models. The findings showcase superior optimization outcomes for larger populations and lower mutation probabilities. The research integrates digital twin for rapid evaluations, addressing reliability challenges via computational aging control. The flexible modeling platform enables customized what-if analyses for EDLC designers, aiding in material, cycling, and duty cycle exploration. This aging mitigation approach offers simulation-driven insights and automated optimization tools to extend the operational duration of high-performance EDLCs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023066" target="_blank" >LM2023066: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

  • Svazek periodika

    133

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    001207952200001

  • EID výsledku v databázi Scopus

    2-s2.0-85186383831