Electric-field-induced multiferroic topological solitons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012326" target="_blank" >RIV/46747885:24220/24:00012326 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/24:00586745
Výsledek na webu
<a href="https://www.nature.com/articles/s41563-024-01890-4" target="_blank" >https://www.nature.com/articles/s41563-024-01890-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41563-024-01890-4" target="_blank" >10.1038/s41563-024-01890-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electric-field-induced multiferroic topological solitons
Popis výsledku v původním jazyce
Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in m ul ti fe rroic a nt ifer ro ma gnets.
Název v anglickém jazyce
Electric-field-induced multiferroic topological solitons
Popis výsledku anglicky
Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in m ul ti fe rroic a nt ifer ro ma gnets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Materials
ISSN
1476-1122
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
905-911
Kód UT WoS článku
001233385700001
EID výsledku v databázi Scopus
2-s2.0-85192210085