Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of Flow Instabilities Leading to Non-Synchronous Vibration of Compressor Blades

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012594" target="_blank" >RIV/46747885:24220/24:00012594 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of Flow Instabilities Leading to Non-Synchronous Vibration of Compressor Blades

  • Popis výsledku v původním jazyce

    The long and slender blades in modern turbomachines, especially in front stages of large compressors and last stages of turbines, are subjected to high and unsteady aerodynamic loads. Flow-induced vibration of the blades may occur due to multiple types of aeroelastic instabilities, including coupled-mode flutter or non-synchronous vibration. In the latter case, the oscillation onset does not occur due to unstable fluid-structure interaction, but as a result of a coherent fluid dynamic instability, typically at higher incidence angles and reduced frequencies. The current study investigates the coherent instabilities in flow past an isolated profile, potentially leading to non-synchronous vibration, by experimental techniques and numerical simulations. In a test rig designed for investigation of flutter in a linear blade cascade, an isolated compressor blade profile was mounted at incidence angles ranging between 10-40 deg and Mach numbers spanning from low incompressible to transonic flow regimes. The blade was instrumented with miniature Kulite pressure transducers with pressure ports distributed over the suction side of the blade. In addition to time-resolved pressure measurements, the flow field and shock wave structure near the blade was recorded using shadowgraphic and schlieren techniques by a high-speed camera. The flow field was also modeled using a 3D unsteady Large Eddy Simulation. For low angles of attack, a weakly irregular flow instability due to oscillation of the normal shock is detected at certain conditions, with two frequency peaks around 50 and 100 Hz. At medium angles of attack, the spectra of the Kulite pressure transducers contain a single peak roughly corresponding to the frequency of Strouhal vortex shedding, i.e. between 650-750 Hz. At high angles of attack and Mach numbers, Strouhal vortex shedding disappears and a new peak occurs in the spectra at a significantly lower frequency below 100 Hz. This low-frequency peak seems to be caused by oscillation of the separation zone boundary, forming a convergent-divergent channel and accelerating the flow to supersonic velocity.

  • Název v anglickém jazyce

    Investigation of Flow Instabilities Leading to Non-Synchronous Vibration of Compressor Blades

  • Popis výsledku anglicky

    The long and slender blades in modern turbomachines, especially in front stages of large compressors and last stages of turbines, are subjected to high and unsteady aerodynamic loads. Flow-induced vibration of the blades may occur due to multiple types of aeroelastic instabilities, including coupled-mode flutter or non-synchronous vibration. In the latter case, the oscillation onset does not occur due to unstable fluid-structure interaction, but as a result of a coherent fluid dynamic instability, typically at higher incidence angles and reduced frequencies. The current study investigates the coherent instabilities in flow past an isolated profile, potentially leading to non-synchronous vibration, by experimental techniques and numerical simulations. In a test rig designed for investigation of flutter in a linear blade cascade, an isolated compressor blade profile was mounted at incidence angles ranging between 10-40 deg and Mach numbers spanning from low incompressible to transonic flow regimes. The blade was instrumented with miniature Kulite pressure transducers with pressure ports distributed over the suction side of the blade. In addition to time-resolved pressure measurements, the flow field and shock wave structure near the blade was recorded using shadowgraphic and schlieren techniques by a high-speed camera. The flow field was also modeled using a 3D unsteady Large Eddy Simulation. For low angles of attack, a weakly irregular flow instability due to oscillation of the normal shock is detected at certain conditions, with two frequency peaks around 50 and 100 Hz. At medium angles of attack, the spectra of the Kulite pressure transducers contain a single peak roughly corresponding to the frequency of Strouhal vortex shedding, i.e. between 650-750 Hz. At high angles of attack and Mach numbers, Strouhal vortex shedding disappears and a new peak occurs in the spectra at a significantly lower frequency below 100 Hz. This low-frequency peak seems to be caused by oscillation of the separation zone boundary, forming a convergent-divergent channel and accelerating the flow to supersonic velocity.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20304 - Aerospace engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LUAUS23231" target="_blank" >LUAUS23231: Příčiny a mechanismy vzniku flutteru a nesynchronních vibrací v moderních turbostrojích pracujících v širokém rozsahu pracovních režimů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů