Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Increasing the Effectivity of Business Intelligence Tools via Amplified Data Knowledge

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F21%3A00008843" target="_blank" >RIV/46747885:24310/21:00008843 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://sic.ici.ro/increasing-the-effectivity-of-business-intelligence-tools-via-amplified-data-knowledge/" target="_blank" >https://sic.ici.ro/increasing-the-effectivity-of-business-intelligence-tools-via-amplified-data-knowledge/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24846/v30i2y202106" target="_blank" >10.24846/v30i2y202106</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Increasing the Effectivity of Business Intelligence Tools via Amplified Data Knowledge

  • Popis výsledku v původním jazyce

    Decisions based on data are crucial for the successful operation of modern companies. The fundamental part of decision making and knowledge creation is the business intelligence process. The effectivity of business intelligence tools depends on many factors. One factor of major importance is data quality. From the perspective of business intelligence data quality is related to multiple dimensions including those connected to the understanding of data. The aim of this paper is to improve the data understanding process in the existing typical business intelligence architecture by adding specific knowledge layers. An explicit data knowledge layer should be connected to the existing metadata layer. Data governance principles suggest setting up an ownership structure in data processes which also allows access to tacit knowledge. The practical value of the inclusion of the suggested knowledge layers in the existing business intelligence architecture is confirmed via a real business case study from the banking sector. The selected case study reflects the manner in which the current metamodel contributes to the big data phenomenon by improving its value element within the context of collaborative decision making in big organizations by using quality data that stems from tacit knowledge, and via a synergetic functionality of business intelligence and knowledge management.

  • Název v anglickém jazyce

    Increasing the Effectivity of Business Intelligence Tools via Amplified Data Knowledge

  • Popis výsledku anglicky

    Decisions based on data are crucial for the successful operation of modern companies. The fundamental part of decision making and knowledge creation is the business intelligence process. The effectivity of business intelligence tools depends on many factors. One factor of major importance is data quality. From the perspective of business intelligence data quality is related to multiple dimensions including those connected to the understanding of data. The aim of this paper is to improve the data understanding process in the existing typical business intelligence architecture by adding specific knowledge layers. An explicit data knowledge layer should be connected to the existing metadata layer. Data governance principles suggest setting up an ownership structure in data processes which also allows access to tacit knowledge. The practical value of the inclusion of the suggested knowledge layers in the existing business intelligence architecture is confirmed via a real business case study from the banking sector. The selected case study reflects the manner in which the current metamodel contributes to the big data phenomenon by improving its value element within the context of collaborative decision making in big organizations by using quality data that stems from tacit knowledge, and via a synergetic functionality of business intelligence and knowledge management.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Studies in Informatics and Control

  • ISSN

    1220-1766

  • e-ISSN

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    RO - Rumunsko

  • Počet stran výsledku

    11

  • Strana od-do

    67-77

  • Kód UT WoS článku

    000665728800006

  • EID výsledku v databázi Scopus

    2-s2.0-85109435961