Increasing the Effectivity of Business Intelligence Tools via Amplified Data Knowledge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F21%3A00008843" target="_blank" >RIV/46747885:24310/21:00008843 - isvavai.cz</a>
Výsledek na webu
<a href="https://sic.ici.ro/increasing-the-effectivity-of-business-intelligence-tools-via-amplified-data-knowledge/" target="_blank" >https://sic.ici.ro/increasing-the-effectivity-of-business-intelligence-tools-via-amplified-data-knowledge/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24846/v30i2y202106" target="_blank" >10.24846/v30i2y202106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Increasing the Effectivity of Business Intelligence Tools via Amplified Data Knowledge
Popis výsledku v původním jazyce
Decisions based on data are crucial for the successful operation of modern companies. The fundamental part of decision making and knowledge creation is the business intelligence process. The effectivity of business intelligence tools depends on many factors. One factor of major importance is data quality. From the perspective of business intelligence data quality is related to multiple dimensions including those connected to the understanding of data. The aim of this paper is to improve the data understanding process in the existing typical business intelligence architecture by adding specific knowledge layers. An explicit data knowledge layer should be connected to the existing metadata layer. Data governance principles suggest setting up an ownership structure in data processes which also allows access to tacit knowledge. The practical value of the inclusion of the suggested knowledge layers in the existing business intelligence architecture is confirmed via a real business case study from the banking sector. The selected case study reflects the manner in which the current metamodel contributes to the big data phenomenon by improving its value element within the context of collaborative decision making in big organizations by using quality data that stems from tacit knowledge, and via a synergetic functionality of business intelligence and knowledge management.
Název v anglickém jazyce
Increasing the Effectivity of Business Intelligence Tools via Amplified Data Knowledge
Popis výsledku anglicky
Decisions based on data are crucial for the successful operation of modern companies. The fundamental part of decision making and knowledge creation is the business intelligence process. The effectivity of business intelligence tools depends on many factors. One factor of major importance is data quality. From the perspective of business intelligence data quality is related to multiple dimensions including those connected to the understanding of data. The aim of this paper is to improve the data understanding process in the existing typical business intelligence architecture by adding specific knowledge layers. An explicit data knowledge layer should be connected to the existing metadata layer. Data governance principles suggest setting up an ownership structure in data processes which also allows access to tacit knowledge. The practical value of the inclusion of the suggested knowledge layers in the existing business intelligence architecture is confirmed via a real business case study from the banking sector. The selected case study reflects the manner in which the current metamodel contributes to the big data phenomenon by improving its value element within the context of collaborative decision making in big organizations by using quality data that stems from tacit knowledge, and via a synergetic functionality of business intelligence and knowledge management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studies in Informatics and Control
ISSN
1220-1766
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
11
Strana od-do
67-77
Kód UT WoS článku
000665728800006
EID výsledku v databázi Scopus
2-s2.0-85109435961