Machine Learning Tools for Ensuring Optimized Agribusiness Recovery Strategies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24310%2F23%3A00009896" target="_blank" >RIV/46747885:24310/23:00009896 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.igi-global.com/gateway/chapter/317180" target="_blank" >https://www.igi-global.com/gateway/chapter/317180</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-6684-4649-2" target="_blank" >10.4018/978-1-6684-4649-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Tools for Ensuring Optimized Agribusiness Recovery Strategies
Popis výsledku v původním jazyce
The chapter presents machine learning approaches for business continuity and recovery optimization in agribusiness. Firstly, a mathematical method, entitled business continuity points (BCPTs) is tested with domain data for its potential to predict process recovery results, namely recovery time and criticality ranking of key operations. A 72.22% accuracy has been estimated. Then, decision tree prediction with 10-fold cross validation and random forest has been 92.31% accurate in classifying business functions as critical or not. Additionally, a new multi-approach and multi-class decision tree classifier with some of the BCPTs input variables is presented, with 55.36% accuracy, and 70.37% and 88.89% accuracy rates when boosted with the 10 folds and the random forest. Finally, regression analysis techniques are used to improve the initial recovery time BCPTs formula. Exponential regression has been more precise compared to the quadratic model (R2exp=0.954, R2quad=0.85). Despite current data limitations, the inferred prediction patterns are robust and highly accurate in the given field.
Název v anglickém jazyce
Machine Learning Tools for Ensuring Optimized Agribusiness Recovery Strategies
Popis výsledku anglicky
The chapter presents machine learning approaches for business continuity and recovery optimization in agribusiness. Firstly, a mathematical method, entitled business continuity points (BCPTs) is tested with domain data for its potential to predict process recovery results, namely recovery time and criticality ranking of key operations. A 72.22% accuracy has been estimated. Then, decision tree prediction with 10-fold cross validation and random forest has been 92.31% accurate in classifying business functions as critical or not. Additionally, a new multi-approach and multi-class decision tree classifier with some of the BCPTs input variables is presented, with 55.36% accuracy, and 70.37% and 88.89% accuracy rates when boosted with the 10 folds and the random forest. Finally, regression analysis techniques are used to improve the initial recovery time BCPTs formula. Exponential regression has been more precise compared to the quadratic model (R2exp=0.954, R2quad=0.85). Despite current data limitations, the inferred prediction patterns are robust and highly accurate in the given field.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
A. Karmaoui
ISBN
978-1-6684-4649-2
Počet stran výsledku
38
Strana od-do
33-70
Počet stran knihy
269
Název nakladatele
IGI Global
Místo vydání
—
Kód UT WoS kapitoly
—