Monitoring chenille yarn defects using image processing with control charts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F12%3A%230001002" target="_blank" >RIV/46747885:24410/12:#0001002 - isvavai.cz</a>
Výsledek na webu
<a href="http://trj.sagepub.com/content/81/13.toc" target="_blank" >http://trj.sagepub.com/content/81/13.toc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0040517511402123" target="_blank" >10.1177/0040517511402123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monitoring chenille yarn defects using image processing with control charts
Popis výsledku v původním jazyce
In this paper, a control chart is introduced for monitoring various defect types occurring on chenille yarns. To implement the control chart, a grey level image of chenille yarn is captured as an image matrix. Image preprocessing is applied and this involves thresholding to a binary image and a morphological opening operation for removing small objects from the image. The height of the pile yarn, measured from the processed images, is selected as the monitored quality characteristic. Since the monitoredquality characteristic was highly autocorrelated, a first-order autoregressive AR(1) model was found to be appropriate for modelling the autocorrelation structure. Due to estimation of the AR(1) process parameters, a modified exponentially weighted moving average (EWMA) control chart for residuals is implemented as a tool for monitoring and detecting defects. It is shown that the modified EWMA control chart can be used successfully for monitoring different types of chenille yarn defects
Název v anglickém jazyce
Monitoring chenille yarn defects using image processing with control charts
Popis výsledku anglicky
In this paper, a control chart is introduced for monitoring various defect types occurring on chenille yarns. To implement the control chart, a grey level image of chenille yarn is captured as an image matrix. Image preprocessing is applied and this involves thresholding to a binary image and a morphological opening operation for removing small objects from the image. The height of the pile yarn, measured from the processed images, is selected as the monitored quality characteristic. Since the monitoredquality characteristic was highly autocorrelated, a first-order autoregressive AR(1) model was found to be appropriate for modelling the autocorrelation structure. Due to estimation of the AR(1) process parameters, a modified exponentially weighted moving average (EWMA) control chart for residuals is implemented as a tool for monitoring and detecting defects. It is shown that the modified EWMA control chart can be used successfully for monitoring different types of chenille yarn defects
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JS - Řízení spolehlivosti a kvality, zkušebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M06047" target="_blank" >1M06047: Centrum pro jakost a spolehlivost výroby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
TEXTILE RESEARCH JOURNAL
ISSN
0040-5175
e-ISSN
—
Svazek periodika
81
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
1344-1353
Kód UT WoS článku
000293248700004
EID výsledku v databázi Scopus
—