Structure and mechanical properties of nanofibrous ZrO2 derived from alternating field electrospun precursors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F19%3A00009658" target="_blank" >RIV/46747885:24410/19:00009658 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0272884219315883?via=ihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0272884219315883?via=ihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ceramint.2019.06.092" target="_blank" >10.1016/j.ceramint.2019.06.092</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure and mechanical properties of nanofibrous ZrO2 derived from alternating field electrospun precursors
Popis výsledku v původním jazyce
Nanofibrous zirconia (ZrO2) meshes were prepared from precursor fibers which were synthesized using the method of free-surface, high-yield alternating field electrospinning (AFES). The weight ratio of zirconyl chloride salt to polyvinylpyrrolidone (PVP) polymer in liquid precursors was investigated for its effect on the spinnability and formation of precursor fibers as well as on the resulting fibrous ZrO2. The precursor fiber generation measured at a rate up to 5.6 g/h was achieved with a single flat 25-mm diameter alternating current (AC) electrode, which corresponded to production of up to 1.5 g/h of fibrous ZrO2. The calcination process involved annealing the fibers at temperatures which ranged from 600 degrees C to 1000 degrees C and produced 0.1-0.2 mm thick fibrous ZrO2 meshes. Individual nanofibers were found to have diameters between 50 and 350 nm and either a tetragonal (t-ZrO2) or monoclinic (t-ZrO2) structure depending on the calcination temperature. The annealed meshes with total porosity between 98.0 /- 0.2% and 94.6 /- 0.2% showed little deformation or cracking. Tensile strength and modulus of fibrous t-ZrO2 meshes strongly depended on porosity and varied from 0.07 /- 0.03 MPa to 1.05 /- 0.3 MPa and from 90 /- 40 MPa to 388 /- 20 MPa, respectively. The m-ZrO2 meshes resulted similar moduli, but much lower strengths due to their brittleness. A power-law relationship between the elastic modulus and porosity of AFES-derived nanofibrous t-ZrO2 meshes, in comparison with other porous zirconia materials, was also investigated. The results of this study have demonstrated the feasibility of free-surface AFES in sizeable production of zirconia nanofibers and highly porous nanofibrous ceramic structures.
Název v anglickém jazyce
Structure and mechanical properties of nanofibrous ZrO2 derived from alternating field electrospun precursors
Popis výsledku anglicky
Nanofibrous zirconia (ZrO2) meshes were prepared from precursor fibers which were synthesized using the method of free-surface, high-yield alternating field electrospinning (AFES). The weight ratio of zirconyl chloride salt to polyvinylpyrrolidone (PVP) polymer in liquid precursors was investigated for its effect on the spinnability and formation of precursor fibers as well as on the resulting fibrous ZrO2. The precursor fiber generation measured at a rate up to 5.6 g/h was achieved with a single flat 25-mm diameter alternating current (AC) electrode, which corresponded to production of up to 1.5 g/h of fibrous ZrO2. The calcination process involved annealing the fibers at temperatures which ranged from 600 degrees C to 1000 degrees C and produced 0.1-0.2 mm thick fibrous ZrO2 meshes. Individual nanofibers were found to have diameters between 50 and 350 nm and either a tetragonal (t-ZrO2) or monoclinic (t-ZrO2) structure depending on the calcination temperature. The annealed meshes with total porosity between 98.0 /- 0.2% and 94.6 /- 0.2% showed little deformation or cracking. Tensile strength and modulus of fibrous t-ZrO2 meshes strongly depended on porosity and varied from 0.07 /- 0.03 MPa to 1.05 /- 0.3 MPa and from 90 /- 40 MPa to 388 /- 20 MPa, respectively. The m-ZrO2 meshes resulted similar moduli, but much lower strengths due to their brittleness. A power-law relationship between the elastic modulus and porosity of AFES-derived nanofibrous t-ZrO2 meshes, in comparison with other porous zirconia materials, was also investigated. The results of this study have demonstrated the feasibility of free-surface AFES in sizeable production of zirconia nanofibers and highly porous nanofibrous ceramic structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ceramics International
ISSN
0272-8842
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
18672-18682
Kód UT WoS článku
000483454200062
EID výsledku v databázi Scopus
2-s2.0-85067203704