CuS Nanoparticle-Based Microcapsules for Solar-Induced Phase-Change Energy Storage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F22%3A00010395" target="_blank" >RIV/46747885:24410/22:00010395 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsanm.2c02804" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.2c02804</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.2c02804" target="_blank" >10.1021/acsanm.2c02804</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CuS Nanoparticle-Based Microcapsules for Solar-Induced Phase-Change Energy Storage
Popis výsledku v původním jazyce
Phase-change microcapsules with photothermal conversion capabilities have been the focus of research in the energy storage field. In this study, a route is developed to prepare photothermal conversion and phase-change energy storage microcapsules by copper sulfide-stabilized Pickering emulsion with dodecanol tetradecyl ester as the phase-change material (PCM) and melamine formaldehyde resin (MF) as a shell. Spherical CuS particles with a diameter of approximately 10 nm are first synthesized by a facile hydrothermal reaction. The obtained CuS nanoparticles are used not only as a stabilizer but also as a photothermal conversion material in the preparation of the microcapsules. Then, the PCM microcapsules are prepared by a one-pot interfacial polymerization route and showed a well-defined core–shell structure with an average size of approximately 7 μm. The synthesized microcapsules have a latent heat of up to 180.3 J/g and an encapsulation efficiency of 81.36%. Meanwhile, the thermal conductivity of the microcapsules increased by 115–254% compared to the core material due to the hybrid shell filled with CuS nanoparticles. The photothermal conversion capacity of the synthesized microcapsules is measured and calculated to be up to 85.6%, achieving light-induced phase change and further inducing the passive thermal cycle. This study provides a potential candidate for the application of light-induced energy storage microcapsules in fabric insulation, solar hot water heating systems, and solar thermal power systems.
Název v anglickém jazyce
CuS Nanoparticle-Based Microcapsules for Solar-Induced Phase-Change Energy Storage
Popis výsledku anglicky
Phase-change microcapsules with photothermal conversion capabilities have been the focus of research in the energy storage field. In this study, a route is developed to prepare photothermal conversion and phase-change energy storage microcapsules by copper sulfide-stabilized Pickering emulsion with dodecanol tetradecyl ester as the phase-change material (PCM) and melamine formaldehyde resin (MF) as a shell. Spherical CuS particles with a diameter of approximately 10 nm are first synthesized by a facile hydrothermal reaction. The obtained CuS nanoparticles are used not only as a stabilizer but also as a photothermal conversion material in the preparation of the microcapsules. Then, the PCM microcapsules are prepared by a one-pot interfacial polymerization route and showed a well-defined core–shell structure with an average size of approximately 7 μm. The synthesized microcapsules have a latent heat of up to 180.3 J/g and an encapsulation efficiency of 81.36%. Meanwhile, the thermal conductivity of the microcapsules increased by 115–254% compared to the core material due to the hybrid shell filled with CuS nanoparticles. The photothermal conversion capacity of the synthesized microcapsules is measured and calculated to be up to 85.6%, achieving light-induced phase change and further inducing the passive thermal cycle. This study provides a potential candidate for the application of light-induced energy storage microcapsules in fabric insulation, solar hot water heating systems, and solar thermal power systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
13009-13017
Kód UT WoS článku
000858580400001
EID výsledku v databázi Scopus
2-s2.0-85138796936