Carbon-Based Functional Materials Derived from Fibrous Wastes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F23%3A00011971" target="_blank" >RIV/46747885:24410/23:00011971 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-99-6002-6_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-99-6002-6_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-99-6002-6_10" target="_blank" >10.1007/978-981-99-6002-6_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Carbon-Based Functional Materials Derived from Fibrous Wastes
Popis výsledku v původním jazyce
The accumulation of feedstock fibrous materials as wastes for industries has led to the growing need for techno-economic and sustainable methods to utilize these fibrous wastes in various forms, towards favorable areas of applications. Over the years, numerous efforts have been taken to obtain carbon-based materials in its various allotropic forms from both natural and synthetic sources of fibrous wastes. Fibrous wastes are processed through varying conditions of pyrolysis, stabilization (if required), carbonization, or graphitization to obtain carbon rich materials, which then may be activated (physical or chemical activation) to obtain activated carbon fibers, with multifunctional properties such as high surface area, variable pore size and volume, chemical inertness and stability, electrical and thermal conductivity; envisioned for potential scope in various applications such as adsorption of contaminants, supercapacitors and batteries, water filters (removal of chlorine, organic matter, etc.), surface treatment liquid cleaning, and gas phase applications (deodorization/volatile organic compound (VOC) adsorption). Fibrous adsorbents have the advantages of fast adsorption rate and ease of handling when compared with granular adsorbents and powdered adsorbents. Activated carbon fiber (ACF) is a promising microporous material with a fiber shape and well-defined porous structure. In general, ACF can be commercially manufactured from synthetic carbon fiber (CF) with an additional activation process. Processing of activated carbon fibers from various precursors involves the same steps as conducted in the preparation of traditional carbon fiber except for an additional step of activation of carbon fibers, where pore distribution of the precursor is further developed and matured. In this chapter, we potentially review the utilization of fibrous wastes to develop carbonaceous materials with promising functionalities.
Název v anglickém jazyce
Carbon-Based Functional Materials Derived from Fibrous Wastes
Popis výsledku anglicky
The accumulation of feedstock fibrous materials as wastes for industries has led to the growing need for techno-economic and sustainable methods to utilize these fibrous wastes in various forms, towards favorable areas of applications. Over the years, numerous efforts have been taken to obtain carbon-based materials in its various allotropic forms from both natural and synthetic sources of fibrous wastes. Fibrous wastes are processed through varying conditions of pyrolysis, stabilization (if required), carbonization, or graphitization to obtain carbon rich materials, which then may be activated (physical or chemical activation) to obtain activated carbon fibers, with multifunctional properties such as high surface area, variable pore size and volume, chemical inertness and stability, electrical and thermal conductivity; envisioned for potential scope in various applications such as adsorption of contaminants, supercapacitors and batteries, water filters (removal of chlorine, organic matter, etc.), surface treatment liquid cleaning, and gas phase applications (deodorization/volatile organic compound (VOC) adsorption). Fibrous adsorbents have the advantages of fast adsorption rate and ease of handling when compared with granular adsorbents and powdered adsorbents. Activated carbon fiber (ACF) is a promising microporous material with a fiber shape and well-defined porous structure. In general, ACF can be commercially manufactured from synthetic carbon fiber (CF) with an additional activation process. Processing of activated carbon fibers from various precursors involves the same steps as conducted in the preparation of traditional carbon fiber except for an additional step of activation of carbon fibers, where pore distribution of the precursor is further developed and matured. In this chapter, we potentially review the utilization of fibrous wastes to develop carbonaceous materials with promising functionalities.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advanced Multifunctional Materials from Fibrous Structures
ISBN
978-981-99-6001-9
Počet stran výsledku
28
Strana od-do
227-254
Počet stran knihy
317
Název nakladatele
Springer Nature
Místo vydání
Singapore
Kód UT WoS kapitoly
—