Application of Graphene in Supercapacitor and Wearable Sensor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F23%3A00012206" target="_blank" >RIV/46747885:24410/23:00012206 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-99-6002-6_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-99-6002-6_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-99-6002-6_3" target="_blank" >10.1007/978-981-99-6002-6_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Graphene in Supercapacitor and Wearable Sensor
Popis výsledku v původním jazyce
The performance of energy storage devices and sensors is predominantly influenced by the microstructure and composition of the electrode materials. The two-dimensional (2D) structure of graphene has attracted significant attention in the research of supercapacitors and wearable sensors due to its remarkable electrical conductivity, mechanical properties, and large surface area surpassing that of carbon nanotubes. The inherent porous structure of graphene provides ample space for the storage and transportation of electrolyte ions, enabling fast charge/discharge kinetics. The human body is a complex system abundant with sensory organs such as fingers, nose, mouth, and more. Numerous physiological signals are continuously generated, which can reflect the body‘s condition. However, the interface between commercial rigid sensors and the skin is often inadequate, resulting in suboptimal signal quality. In this chapter, our objective is to review the recent advancements in graphene research and development for the applications of supercapacitors and wearable sensors. We will provide an overview of various synthesis strategies for graphene and explore their potential utilization in both asymmetric/symmetric supercapacitors and wearable sensors.
Název v anglickém jazyce
Application of Graphene in Supercapacitor and Wearable Sensor
Popis výsledku anglicky
The performance of energy storage devices and sensors is predominantly influenced by the microstructure and composition of the electrode materials. The two-dimensional (2D) structure of graphene has attracted significant attention in the research of supercapacitors and wearable sensors due to its remarkable electrical conductivity, mechanical properties, and large surface area surpassing that of carbon nanotubes. The inherent porous structure of graphene provides ample space for the storage and transportation of electrolyte ions, enabling fast charge/discharge kinetics. The human body is a complex system abundant with sensory organs such as fingers, nose, mouth, and more. Numerous physiological signals are continuously generated, which can reflect the body‘s condition. However, the interface between commercial rigid sensors and the skin is often inadequate, resulting in suboptimal signal quality. In this chapter, our objective is to review the recent advancements in graphene research and development for the applications of supercapacitors and wearable sensors. We will provide an overview of various synthesis strategies for graphene and explore their potential utilization in both asymmetric/symmetric supercapacitors and wearable sensors.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
<a href="/cs/project/TM03000010" target="_blank" >TM03000010: Kompozita zesílená uhlíkovými vlákny plněná grafénem/grafitem určená zejména pro ochrannou schránku baterií v autech s elektrickým pohonem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advanced Multifunctional Materials from Fibrous Structures
ISBN
978-981-99-6001-9
Počet stran výsledku
21
Strana od-do
49-69
Počet stran knihy
317
Název nakladatele
Springer
Místo vydání
Singapore
Kód UT WoS kapitoly
—