Development of supercapacitor electrodes with high strength via inkjet printing of reduced graphene oxide/ aramid nanofibers membranes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F24%3A00012491" target="_blank" >RIV/46747885:24410/24:00012491 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s12221-024-00754-7" target="_blank" >https://link.springer.com/article/10.1007/s12221-024-00754-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12221-024-00754-7" target="_blank" >10.1007/s12221-024-00754-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development of supercapacitor electrodes with high strength via inkjet printing of reduced graphene oxide/ aramid nanofibers membranes
Popis výsledku v původním jazyce
In this study, we initially prepared a high-strength composite film of ANFs/PVDF/PVA. Subsequently, through inkjet printing and in-situ reduction, we successfully coated rGO onto the surface of the composite film. The electrode exhibits outstanding electrochemical performance, high specific capacitance, good energy density, and stable charge/discharge cycles. The results indicate that when the content of ANFs, PVDF, and PVA is 0.1 w/w%, 2 w/w%, and 8 w/w%, respectively, the Young‘s modulus can reach an impressive 760 MPa. The CV curves reveal that the prepared rGO/ANFs/PVDF/PVA belongs to the category of standard double-layer capacitors. Furthermore, even under bending conditions, the CV curves of the fabricated supercapacitor remain nearly consistent, demonstrating excellent flexibility and the ability to operate normally even under relatively harsh conditions. The actual specific capacitance is calculated from charge/discharge curves and reaches up to 120.9 F/g at a current density of 0.1 A/g. After 5000 charge/discharge cycles, the efficiency still maintains stability above 90 %. At an extremely low current density (0.1 A/g), it achieves an energy density of 10.8 Wh/kg. Overall, the prepared SCs possess excellent mechanical strength, flexible and stable electrochemical performance, providing significant advantages for the next generation of miniaturized electronic devices.
Název v anglickém jazyce
Development of supercapacitor electrodes with high strength via inkjet printing of reduced graphene oxide/ aramid nanofibers membranes
Popis výsledku anglicky
In this study, we initially prepared a high-strength composite film of ANFs/PVDF/PVA. Subsequently, through inkjet printing and in-situ reduction, we successfully coated rGO onto the surface of the composite film. The electrode exhibits outstanding electrochemical performance, high specific capacitance, good energy density, and stable charge/discharge cycles. The results indicate that when the content of ANFs, PVDF, and PVA is 0.1 w/w%, 2 w/w%, and 8 w/w%, respectively, the Young‘s modulus can reach an impressive 760 MPa. The CV curves reveal that the prepared rGO/ANFs/PVDF/PVA belongs to the category of standard double-layer capacitors. Furthermore, even under bending conditions, the CV curves of the fabricated supercapacitor remain nearly consistent, demonstrating excellent flexibility and the ability to operate normally even under relatively harsh conditions. The actual specific capacitance is calculated from charge/discharge curves and reaches up to 120.9 F/g at a current density of 0.1 A/g. After 5000 charge/discharge cycles, the efficiency still maintains stability above 90 %. At an extremely low current density (0.1 A/g), it achieves an energy density of 10.8 Wh/kg. Overall, the prepared SCs possess excellent mechanical strength, flexible and stable electrochemical performance, providing significant advantages for the next generation of miniaturized electronic devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fibers and Polymers
ISSN
1229-9197
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
KR - Korejská republika
Počet stran výsledku
12
Strana od-do
4215-4226
Kód UT WoS článku
001339304500002
EID výsledku v databázi Scopus
2-s2.0-85207021513