Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Construction of orthonormal wavelets using symbolic algebraic methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F09%3A%230000218" target="_blank" >RIV/46747885:24510/09:#0000218 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Construction of orthonormal wavelets using symbolic algebraic methods

  • Popis výsledku v původním jazyce

    Our contribution is concerned with the solution of nonlinear algebraic equations systems arising from the computation of scaling coefficients of orthonormal wavelets with compact support. Specifically Daubechies wavelets, symmlets, coiflets, and generalized coiflets. These wavelets are defined as a solution of equation systems which are partly linear and partly nonlinear. The idea of presented methods consists in replacing those equations for scaling coefficients by equations for scaling moments. It enables us to eliminate some quadratic conditions in the original system and then simplify it. The simplified system is solved with the aid of the Gr"{o}bner basis method. The advantage of our approach is that in some cases, it provides all possible solutions and these solutions can be computed to arbitrary precision. For small systems, we are even able to find explicit solutions. The computation was carried out by symbolic algebra software Maple.

  • Název v anglickém jazyce

    Construction of orthonormal wavelets using symbolic algebraic methods

  • Popis výsledku anglicky

    Our contribution is concerned with the solution of nonlinear algebraic equations systems arising from the computation of scaling coefficients of orthonormal wavelets with compact support. Specifically Daubechies wavelets, symmlets, coiflets, and generalized coiflets. These wavelets are defined as a solution of equation systems which are partly linear and partly nonlinear. The idea of presented methods consists in replacing those equations for scaling coefficients by equations for scaling moments. It enables us to eliminate some quadratic conditions in the original system and then simplify it. The simplified system is solved with the aid of the Gr"{o}bner basis method. The advantage of our approach is that in some cases, it provides all possible solutions and these solutions can be computed to arbitrary precision. For small systems, we are even able to find explicit solutions. The computation was carried out by symbolic algebra software Maple.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Numerical analysis and applied mathematics, Volume 2

  • ISBN

    9780735407084

  • ISSN

    0094-243X

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    American Institute of Physics

  • Místo vydání

    New York

  • Místo konání akce

    Rethymno, Crete, Greece

  • Datum konání akce

    18. 9. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    BMO15