The Construction of Well-Conditioned Wavelet Basis Based on Quadratic B-Splines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000816" target="_blank" >RIV/46747885:24510/12:#0000816 - isvavai.cz</a>
Výsledek na webu
<a href="http://proceedings.aip.org" target="_blank" >http://proceedings.aip.org</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Construction of Well-Conditioned Wavelet Basis Based on Quadratic B-Splines
Popis výsledku v původním jazyce
The design of most adaptive wavelet methods for solving differential equations follows a general concept proposed by A. Cohen, W. Dahmen, and R. DeVore. The essential steps are: to transform the variational formulation into the well-conditioned infinite-dimensional l2-problem, to find the convergent iteration process for this infinite-dimensional l2-problem and finally to derive its finite-dimensional approximation which works with an inexact right hand-side and an approximate matrix-vector multiplication. It should provide an approximation of the unknown solution up to a given target accuracy epsilon. To perform this scheme efficiently, it is necessary to have at one's disposal suitable wavelet bases which fit well into this concept. Wavelets should have short supports and vanishing moments, be smooth and known in closed form, and a corresponding wavelet basis should be well-conditioned. In our contribution, we propose a quadratic wavelet basis adapted to the interval [0,1] which pres
Název v anglickém jazyce
The Construction of Well-Conditioned Wavelet Basis Based on Quadratic B-Splines
Popis výsledku anglicky
The design of most adaptive wavelet methods for solving differential equations follows a general concept proposed by A. Cohen, W. Dahmen, and R. DeVore. The essential steps are: to transform the variational formulation into the well-conditioned infinite-dimensional l2-problem, to find the convergent iteration process for this infinite-dimensional l2-problem and finally to derive its finite-dimensional approximation which works with an inexact right hand-side and an approximate matrix-vector multiplication. It should provide an approximation of the unknown solution up to a given target accuracy epsilon. To perform this scheme efficiently, it is necessary to have at one's disposal suitable wavelet bases which fit well into this concept. Wavelets should have short supports and vanishing moments, be smooth and known in closed form, and a corresponding wavelet basis should be well-conditioned. In our contribution, we propose a quadratic wavelet basis adapted to the interval [0,1] which pres
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
9780735410916
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
230-233
Název nakladatele
American Institute of Physics
Místo vydání
New York
Místo konání akce
Kos, Greece
Datum konání akce
1. 1. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
310698100055