Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Homogeneity testing for spatially correlated data in multivariate regional frequency analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F17%3A00004627" target="_blank" >RIV/46747885:24510/17:00004627 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://onlinelibrary.wiley.com/doi/10.1002/2016WR020295/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/2016WR020295/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/2016WR020295" target="_blank" >10.1002/2016WR020295</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Homogeneity testing for spatially correlated data in multivariate regional frequency analysis

  • Popis výsledku v původním jazyce

    Identification of homogeneous regions is a key task in regional frequency analysis (RFA) to obtain adequate quantile estimates for an event of interest. Recently, the frequently used univariate Hosking-Wallis L-moment homogeneity test was extended to the multivariate case. Multivariate L-moments are used as a tool to define the test statistic and copula models to describe the statistical behavior of the analyzed dependent variables. To avoid drawbacks in fitting a parametric joint distribution to the data and a rejection threshold which is based on simulations, its nonparametric alternatives were also proposed. Although the simulation studies performed demonstrated the usefulness of both the parametric and nonparametric tests, the powers obtained were valid only for regions without intersite dependence. Examples from practice nevertheless demonstrate that intersite correlation may be expected for some kinds of data. To overcome the problem of cross correlation between stations, the parametric testing procedure is generalized using D-vine copulas to model intersite dependence when generating synthetic homogeneous regions during the testing procedure. Monte Carlo simulations were performed and illustrate how intersite dependence negatively impacts the multivariate L-moment homogeneity tests by significantly reducing their powers. The results of simulations also demonstrate the superiority of the proposed modification over both the original parametric and nonparametric procedures inasmuch as it improves the heterogeneity detection and avoids miscategorization of a region. The modified test is also applied in a case study for meteorological data in the Czech Republic.

  • Název v anglickém jazyce

    Homogeneity testing for spatially correlated data in multivariate regional frequency analysis

  • Popis výsledku anglicky

    Identification of homogeneous regions is a key task in regional frequency analysis (RFA) to obtain adequate quantile estimates for an event of interest. Recently, the frequently used univariate Hosking-Wallis L-moment homogeneity test was extended to the multivariate case. Multivariate L-moments are used as a tool to define the test statistic and copula models to describe the statistical behavior of the analyzed dependent variables. To avoid drawbacks in fitting a parametric joint distribution to the data and a rejection threshold which is based on simulations, its nonparametric alternatives were also proposed. Although the simulation studies performed demonstrated the usefulness of both the parametric and nonparametric tests, the powers obtained were valid only for regions without intersite dependence. Examples from practice nevertheless demonstrate that intersite correlation may be expected for some kinds of data. To overcome the problem of cross correlation between stations, the parametric testing procedure is generalized using D-vine copulas to model intersite dependence when generating synthetic homogeneous regions during the testing procedure. Monte Carlo simulations were performed and illustrate how intersite dependence negatively impacts the multivariate L-moment homogeneity tests by significantly reducing their powers. The results of simulations also demonstrate the superiority of the proposed modification over both the original parametric and nonparametric procedures inasmuch as it improves the heterogeneity detection and avoids miscategorization of a region. The modified test is also applied in a case study for meteorological data in the Czech Republic.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10501 - Hydrology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-18675S" target="_blank" >GA14-18675S: Pokročilé modely srážkových extrémů a jejich aplikace v simulacích klimatických modelů s vysokým rozlišením</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Water Resources Research

  • ISSN

    0043-1397

  • e-ISSN

  • Svazek periodika

    53

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    7012-7028

  • Kód UT WoS článku

    000411202000036

  • EID výsledku v databázi Scopus

    2-s2.0-85029685950