A Note on Several Alternatives to Numerical Pricing of Options
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F17%3A00006306" target="_blank" >RIV/46747885:24510/17:00006306 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/17:10240132
Výsledek na webu
<a href="http://lef.tul.cz/" target="_blank" >http://lef.tul.cz/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Note on Several Alternatives to Numerical Pricing of Options
Popis výsledku v původním jazyce
Option pricing is a popular problem of financial mathematics and optimization due to the non-linearity in the option pay-off function and enormous sensitivity to the selection of underlying processes and input parameters. This aspect differentiates options from other derivatives. Since pricing and hedging of plain vanilla options under the conditions of Gaussian distribution (or a so called Black-Scholes model) is already well documented, it commonly serves as a benchmark for developing of new approaches and methods, which, in fact, aims on options with more complex payoffs (exotic options) and/or probability distributions that fit empirical observations about the market prices better, but for which no analytical formula is available. Obviously, being able to compare the results of the novel model with theoretically correct one is a crucial step of model testing. In this contribution we focuse on numerical pricing of options. We first review well known approaches of Monte Carlo simulation and Lattice models and subsequently we formulate a Black-Scholes-Merton Partial Differential Equation, which serves as a starting point for discretization via two novel approaches, discontinuous Galerkin approach and Fuzzy transform technique. Both approaches seems to be promising especially for complex processes and payoff functions.
Název v anglickém jazyce
A Note on Several Alternatives to Numerical Pricing of Options
Popis výsledku anglicky
Option pricing is a popular problem of financial mathematics and optimization due to the non-linearity in the option pay-off function and enormous sensitivity to the selection of underlying processes and input parameters. This aspect differentiates options from other derivatives. Since pricing and hedging of plain vanilla options under the conditions of Gaussian distribution (or a so called Black-Scholes model) is already well documented, it commonly serves as a benchmark for developing of new approaches and methods, which, in fact, aims on options with more complex payoffs (exotic options) and/or probability distributions that fit empirical observations about the market prices better, but for which no analytical formula is available. Obviously, being able to compare the results of the novel model with theoretically correct one is a crucial step of model testing. In this contribution we focuse on numerical pricing of options. We first review well known approaches of Monte Carlo simulation and Lattice models and subsequently we formulate a Black-Scholes-Merton Partial Differential Equation, which serves as a starting point for discretization via two novel approaches, discontinuous Galerkin approach and Fuzzy transform technique. Both approaches seems to be promising especially for complex processes and payoff functions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-09541S" target="_blank" >GA16-09541S: Robustní numerická schémata pro oceňování vybraných opcí za různých tržních podmínek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
13th International Conference on Liberec Economic Forum
ISBN
978-80-7494-349-2
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
381-389
Název nakladatele
Technical University of Liberec
Místo vydání
Liberec
Místo konání akce
Liberec
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000426486500043