Numerical Valuation of the Investment Project with Expansion Options Based on the PDE Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F21%3A00010949" target="_blank" >RIV/46747885:24510/21:00010949 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27510/21:10252996
Výsledek na webu
<a href="https://mme2021.v2.czu.cz/dl/99363?lang=en" target="_blank" >https://mme2021.v2.czu.cz/dl/99363?lang=en</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Valuation of the Investment Project with Expansion Options Based on the PDE Approach
Popis výsledku v původním jazyce
Compared to the standard DCF methodology, the real options approach provides a solution to optimal investment decisions that captures the value of flexibilities embedded in a project. In this paper we focus on one specific kind of investment decisions - an option to expand. Assuming values of both the project and the embedded option are determined in terms of time and underlying output price, driven by a relevant stochastic process, one can unify the PDE approach to describe the development of values of the project and options. More precisely, the link is realized through a payoff function enforced at a fixed time. As a result, we obtain a system of relevant governing equations of the Black-Scholes type. Since explicit formulae are known for this type of PDE problem only in specific cases, one must turn to some approximation methods. With reference to the results obtained in valuing financial options, we apply the discontinuous Galerkin method to solve the relevant governing equations. The obtained numerical scheme is applied to a simple illustrative expansion decision problem.
Název v anglickém jazyce
Numerical Valuation of the Investment Project with Expansion Options Based on the PDE Approach
Popis výsledku anglicky
Compared to the standard DCF methodology, the real options approach provides a solution to optimal investment decisions that captures the value of flexibilities embedded in a project. In this paper we focus on one specific kind of investment decisions - an option to expand. Assuming values of both the project and the embedded option are determined in terms of time and underlying output price, driven by a relevant stochastic process, one can unify the PDE approach to describe the development of values of the project and options. More precisely, the link is realized through a payoff function enforced at a fixed time. As a result, we obtain a system of relevant governing equations of the Black-Scholes type. Since explicit formulae are known for this type of PDE problem only in specific cases, one must turn to some approximation methods. With reference to the results obtained in valuing financial options, we apply the discontinuous Galerkin method to solve the relevant governing equations. The obtained numerical scheme is applied to a simple illustrative expansion decision problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
39th International Conference on Mathematical Methods in Economics
ISBN
978-80-213-3126-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
185-190
Název nakladatele
Czech University of Life Sciences Prague
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
1. 1. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000936369700030