Trimetallic nanocomposites developed for efficient <i>in vivo</i> bimodal imaging <i>via</i> fluorescence and magnetic resonance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24530%2F24%3A00013365" target="_blank" >RIV/46747885:24530/24:00013365 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00655k" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00655k</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4tb00655k" target="_blank" >10.1039/d4tb00655k</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trimetallic nanocomposites developed for efficient <i>in vivo</i> bimodal imaging <i>via</i> fluorescence and magnetic resonance
Popis výsledku v původním jazyce
Despite several attempts, in vivo bimodal imaging still represents a challenge. Generally, it is accepted that dual-modality in imaging can improve sensitivity and spatial resolution, namely, when exploiting fluorescence (FI) and magnetic resonance imaging (MRI), respectively. Here, a newly developed combination of (i) protein-protected luminescent Au-Ag nanoclusters (LGSN) manifesting themselves by fluorescent emission at 705 nm and (ii) superparamagnetic iron oxide nanoparticles (SPION) embedded within the same protein and creating contrast in MR images, has been investigated in phantoms and applied for in vivo bimodal imaging of a mouse as a proof of principle. Unique LGSN-SPION nanocomposites were synthesized in a specific sequential one-pot green preparation procedure and characterized thoroughly using many physicochemical experimental techniques. The influence of LGSN-SPION samples on the viability of healthy cells (RPE-1) was tested using a calcein assay. Despite the presence of Ag (0.12 mg mL(-1)), high content of Au (above 0.75 mg mL(-1)), and moderate concentrations of Fe (0.24 mg mL(-1)), LGSN-SPION samples (containing approx. 15 mg mL(-1) of albumin) were revealed as biocompatible (cell viability above 80%). Simultaneously, these concentration values of all components in the LGSN-SPION nanocomposite were used for achieving both MRI and fluorescence signals in phantoms as well as in a living mouse with sufficiently high resolution. Thus, the LGSN-SPION samples can serve as new efficient bimodal FI and MRI probes for in vivo imaging.
Název v anglickém jazyce
Trimetallic nanocomposites developed for efficient <i>in vivo</i> bimodal imaging <i>via</i> fluorescence and magnetic resonance
Popis výsledku anglicky
Despite several attempts, in vivo bimodal imaging still represents a challenge. Generally, it is accepted that dual-modality in imaging can improve sensitivity and spatial resolution, namely, when exploiting fluorescence (FI) and magnetic resonance imaging (MRI), respectively. Here, a newly developed combination of (i) protein-protected luminescent Au-Ag nanoclusters (LGSN) manifesting themselves by fluorescent emission at 705 nm and (ii) superparamagnetic iron oxide nanoparticles (SPION) embedded within the same protein and creating contrast in MR images, has been investigated in phantoms and applied for in vivo bimodal imaging of a mouse as a proof of principle. Unique LGSN-SPION nanocomposites were synthesized in a specific sequential one-pot green preparation procedure and characterized thoroughly using many physicochemical experimental techniques. The influence of LGSN-SPION samples on the viability of healthy cells (RPE-1) was tested using a calcein assay. Despite the presence of Ag (0.12 mg mL(-1)), high content of Au (above 0.75 mg mL(-1)), and moderate concentrations of Fe (0.24 mg mL(-1)), LGSN-SPION samples (containing approx. 15 mg mL(-1) of albumin) were revealed as biocompatible (cell viability above 80%). Simultaneously, these concentration values of all components in the LGSN-SPION nanocomposite were used for achieving both MRI and fluorescence signals in phantoms as well as in a living mouse with sufficiently high resolution. Thus, the LGSN-SPION samples can serve as new efficient bimodal FI and MRI probes for in vivo imaging.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20903 - Bioproducts (products that are manufactured using biological material as feedstock) biomaterials, bioplastics, biofuels, bioderived bulk and fine chemicals, bio-derived novel materials
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF MATERIALS CHEMISTRY B
ISSN
2050-750X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001280082700001
EID výsledku v databázi Scopus
—