Carbon-based Band Gap Engineering in the h-BN Analytical Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F20%3A00007224" target="_blank" >RIV/46747885:24620/20:00007224 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/13/5/1026" target="_blank" >https://www.mdpi.com/1996-1944/13/5/1026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma13051026" target="_blank" >10.3390/ma13051026</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Carbon-based Band Gap Engineering in the h-BN Analytical Modeling
Popis výsledku v původním jazyce
The absence of bandgap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atom with B and N atoms in graphene structure led to the formation of h-BN and caused the opening of its gap. Now, an exciting possibility is a partial substitution of the B and N atoms with C atoms in the graphene structure, which caused the formation of boron nitride composite with specified stoichiometry. On the other hand, BC2N nanotubes are more stable than other triple compounds due to the existence of maximum number of B-N and C-C bonds. This paper focused on the nearest neighbor’s tight-binding method to explore the dispersion relation of BC2N, which has no chemical bond from Carbon-Carbon atom. More specifically, the band dispersion of this specific structure and the effects of energy hoping in Boron-Carbon and Nitrogen-Carbon atoms on bandgap are studied. Besides, the band structure is achieved from DFT using GGA approximation method. This calculation shows that this specific structure is semi-metal, and bandgap energy is 0.167ev.
Název v anglickém jazyce
Carbon-based Band Gap Engineering in the h-BN Analytical Modeling
Popis výsledku anglicky
The absence of bandgap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atom with B and N atoms in graphene structure led to the formation of h-BN and caused the opening of its gap. Now, an exciting possibility is a partial substitution of the B and N atoms with C atoms in the graphene structure, which caused the formation of boron nitride composite with specified stoichiometry. On the other hand, BC2N nanotubes are more stable than other triple compounds due to the existence of maximum number of B-N and C-C bonds. This paper focused on the nearest neighbor’s tight-binding method to explore the dispersion relation of BC2N, which has no chemical bond from Carbon-Carbon atom. More specifically, the band dispersion of this specific structure and the effects of energy hoping in Boron-Carbon and Nitrogen-Carbon atoms on bandgap are studied. Besides, the band structure is achieved from DFT using GGA approximation method. This calculation shows that this specific structure is semi-metal, and bandgap energy is 0.167ev.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000524060200004
EID výsledku v databázi Scopus
2-s2.0-85080863619