Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F21%3A00008156" target="_blank" >RIV/46747885:24620/21:00008156 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4360/13/1/52" target="_blank" >https://www.mdpi.com/2073-4360/13/1/52</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym13010052" target="_blank" >10.3390/polym13010052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings
Popis výsledku v původním jazyce
The honeycomb (HC) core of sandwich structures undergoes flexural loading and carries the normal compression and shear. The mechanical properties and deformation response of the core need to be established for the design requirements. In this respect, this article describes the development of the smallest possible representative cell (RC) models for quantifying the deformation and failure process of the Nomex polymer-based hexagonal HC core structure under the out-of-plane quasi-static loadings. While the hexagonal single and multi-cell models are suitable for the tension and compression, a six-cell model is the simplest RC model developed for shear in the transverse and ribbon direction. Hashin’s matrix and fiber damage equations are employed in simulating the failure process of the orthotropic cell walls, using the finite element (FE) analysis. The FE-calculated load–displacement curves are validated with the comparable measured responses throughout the loading to failure. The location of the fracture plane of the critical cell wall in the out-of-plane tension case is well predicted. The wrinkling of the cell walls, leading to the structural buckling of the HC core specimen in the compression test, compares well with the observed failure mechanisms. In addition, the observed localized buckling of the cell wall by the induced compressive stress during the out-of-plane shear in both the transverse and ribbon direction is explained. The mesoscale RC models of the polymer hexagonal HC core structure have adequately demonstrated the ability to predict the mechanics of deformation and the mechanisms of failure.
Název v anglickém jazyce
Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings
Popis výsledku anglicky
The honeycomb (HC) core of sandwich structures undergoes flexural loading and carries the normal compression and shear. The mechanical properties and deformation response of the core need to be established for the design requirements. In this respect, this article describes the development of the smallest possible representative cell (RC) models for quantifying the deformation and failure process of the Nomex polymer-based hexagonal HC core structure under the out-of-plane quasi-static loadings. While the hexagonal single and multi-cell models are suitable for the tension and compression, a six-cell model is the simplest RC model developed for shear in the transverse and ribbon direction. Hashin’s matrix and fiber damage equations are employed in simulating the failure process of the orthotropic cell walls, using the finite element (FE) analysis. The FE-calculated load–displacement curves are validated with the comparable measured responses throughout the loading to failure. The location of the fracture plane of the critical cell wall in the out-of-plane tension case is well predicted. The wrinkling of the cell walls, leading to the structural buckling of the HC core specimen in the compression test, compares well with the observed failure mechanisms. In addition, the observed localized buckling of the cell wall by the induced compressive stress during the out-of-plane shear in both the transverse and ribbon direction is explained. The mesoscale RC models of the polymer hexagonal HC core structure have adequately demonstrated the ability to predict the mechanics of deformation and the mechanisms of failure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000606090700001
EID výsledku v databázi Scopus
2-s2.0-85098893445