Unraveling timescale-dependent Fe-MOFs crystal evolution for catalytic ozonation reactivity modulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F22%3A00010694" target="_blank" >RIV/46747885:24620/22:00010694 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0304389422003636?token=324BF39431088D732F460685FD185085BC1AFC476C3EBC5D95EE937899242E780AB2E9E4AB738B5EAB06FAA7E9FECE86&originRegion=eu-west-1&originCreation=20230209093818" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0304389422003636?token=324BF39431088D732F460685FD185085BC1AFC476C3EBC5D95EE937899242E780AB2E9E4AB738B5EAB06FAA7E9FECE86&originRegion=eu-west-1&originCreation=20230209093818</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhazmat.2022.128575" target="_blank" >10.1016/j.jhazmat.2022.128575</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unraveling timescale-dependent Fe-MOFs crystal evolution for catalytic ozonation reactivity modulation
Popis výsledku v původním jazyce
Iron-based metal-organic frameworks (Fe-MOFs) have been considered competitive catalyst candidates for the effective degradation of organic pollutants via advanced oxidation processes (AOPs) due to their unique porous architecture and tunable active site structure. However, little is known about the role of synergetic relationship between porous architecture and active site exposure of Fe-MOFs on catalysis for AOPs yet. Here, we demonstrated an overlooked compromise over these two features on modulating the catalytic ozonation reactivity of MIL-53(Fe) through a timescale-dependent crystal evolution. Enabled by intramolecular hydrogen bonds, the MIL-53(Fe) was subjected to six evolution steps in terms of crystal morphology, leading to a volcano plot of catalytic ozonation reactivity for Rhodamine B (RhB) degradation versus the crystallization time. Evidence suggested that the surface area of MIL-53(Fe) decreased dramatically, while the density of accessible active site increased when prolonging crystallization time, allowing for the facile modulation of catalytic ozonation reactivity of MIL-53(Fe). Electron paramagnetic resonance and fluorescence quantification tests verified that the screened MIL-53(Fe)s had a much better capacity for center dot OH generation than benchmark ozonation catalyst alpha-MnO2 and alpha-FeOOH. Moreover, the MIL-53(Fe) with the highest reactivity (i.e., MIL-53(Fe)-18H) could effectively destruct a broad spectrum of emerging and refractory organic pollutants and allow the thorough purification of secondary effluents discharged from textile dyeing & finishing industry for in situ reuse. Therefore, our study advances the understanding of the compromise effect between porous architecture and active site on catalysis reactivity of Fe-MOFs and promotes the rational design of more effective Fe-MOFs as well as their derivatives for environmental applications.
Název v anglickém jazyce
Unraveling timescale-dependent Fe-MOFs crystal evolution for catalytic ozonation reactivity modulation
Popis výsledku anglicky
Iron-based metal-organic frameworks (Fe-MOFs) have been considered competitive catalyst candidates for the effective degradation of organic pollutants via advanced oxidation processes (AOPs) due to their unique porous architecture and tunable active site structure. However, little is known about the role of synergetic relationship between porous architecture and active site exposure of Fe-MOFs on catalysis for AOPs yet. Here, we demonstrated an overlooked compromise over these two features on modulating the catalytic ozonation reactivity of MIL-53(Fe) through a timescale-dependent crystal evolution. Enabled by intramolecular hydrogen bonds, the MIL-53(Fe) was subjected to six evolution steps in terms of crystal morphology, leading to a volcano plot of catalytic ozonation reactivity for Rhodamine B (RhB) degradation versus the crystallization time. Evidence suggested that the surface area of MIL-53(Fe) decreased dramatically, while the density of accessible active site increased when prolonging crystallization time, allowing for the facile modulation of catalytic ozonation reactivity of MIL-53(Fe). Electron paramagnetic resonance and fluorescence quantification tests verified that the screened MIL-53(Fe)s had a much better capacity for center dot OH generation than benchmark ozonation catalyst alpha-MnO2 and alpha-FeOOH. Moreover, the MIL-53(Fe) with the highest reactivity (i.e., MIL-53(Fe)-18H) could effectively destruct a broad spectrum of emerging and refractory organic pollutants and allow the thorough purification of secondary effluents discharged from textile dyeing & finishing industry for in situ reuse. Therefore, our study advances the understanding of the compromise effect between porous architecture and active site on catalysis reactivity of Fe-MOFs and promotes the rational design of more effective Fe-MOFs as well as their derivatives for environmental applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Hazardous Materials
ISSN
0304-3894
e-ISSN
—
Svazek periodika
431
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000783116800002
EID výsledku v databázi Scopus
2-s2.0-85125841154