Successive-Station Streamflow Prediction and Precipitation Uncertainty Analysis in the Zarrineh River Basin Using a Machine Learning Technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00011187" target="_blank" >RIV/46747885:24620/23:00011187 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4441/15/5/999" target="_blank" >https://www.mdpi.com/2073-4441/15/5/999</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w15050999" target="_blank" >10.3390/w15050999</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Successive-Station Streamflow Prediction and Precipitation Uncertainty Analysis in the Zarrineh River Basin Using a Machine Learning Technique
Popis výsledku v původním jazyce
Precise forecasting of streamflow is crucial for the proper supervision of water resources. The purpose of the present investigation is to predict successive-station streamflow using the Gated Recurrent Unit (GRU) model and to quantify the impact of input information (i.e., precipitation) uncertainty on the GRU model’s prediction using the Generalized Likelihood Uncertainty Estimation (GLUE) computation. The Zarrineh River basin in Lake Urmia, Iran, was nominated as the case study due to the importance of the location and its significant contribution to the lake inflow. Four stations in the basin were considered to predict successive-station streamflow from upstream to downstream. The GRU model yielded highly accurate streamflow prediction in all stations. The future precipitation data generated under the Representative Concentration Pathway (RCP) scenarios were used to estimate the effect of precipitation input uncertainty on streamflow prediction. The p-factor (inside the uncertainty interval) and r-factor (width of the uncertainty interval) indices were used to evaluate the streamflow prediction uncertainty. GLUE predicted reliable uncertainty ranges for all the stations from 0.47 to 0.57 for the r-factor and 61.6% to 89.3% for the p-factor.
Název v anglickém jazyce
Successive-Station Streamflow Prediction and Precipitation Uncertainty Analysis in the Zarrineh River Basin Using a Machine Learning Technique
Popis výsledku anglicky
Precise forecasting of streamflow is crucial for the proper supervision of water resources. The purpose of the present investigation is to predict successive-station streamflow using the Gated Recurrent Unit (GRU) model and to quantify the impact of input information (i.e., precipitation) uncertainty on the GRU model’s prediction using the Generalized Likelihood Uncertainty Estimation (GLUE) computation. The Zarrineh River basin in Lake Urmia, Iran, was nominated as the case study due to the importance of the location and its significant contribution to the lake inflow. Four stations in the basin were considered to predict successive-station streamflow from upstream to downstream. The GRU model yielded highly accurate streamflow prediction in all stations. The future precipitation data generated under the Representative Concentration Pathway (RCP) scenarios were used to estimate the effect of precipitation input uncertainty on streamflow prediction. The p-factor (inside the uncertainty interval) and r-factor (width of the uncertainty interval) indices were used to evaluate the streamflow prediction uncertainty. GLUE predicted reliable uncertainty ranges for all the stations from 0.47 to 0.57 for the r-factor and 61.6% to 89.3% for the p-factor.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybridní materiály pro hierarchické struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water
ISSN
2073-4441
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000947880500001
EID výsledku v databázi Scopus
2-s2.0-85149933501